On the Choice of a Prior for Bayesian D-Optimal Designs for the Logistic Regression Model with a Single Predictor

The Bayesian design approach accounts for uncertainty of the parameter values on which optimal design depends, but Bayesian designs themselves depend on the choice of a prior distribution for the parameter values. This article investigates Bayesian D-optimal designs for two-parameter logistic models, using numerical search. We show three things: (1) a prior with large variance leads to a design that remains highly efficient under other priors, (2) uniform and normal priors lead to equally efficient designs, and (3) designs with four or five equidistant equally weighted design points are highly efficient relative to the Bayesian D-optimal designs.

[1]  Martijn P F Berger,et al.  Maximin D‐Optimal Designs for Longitudinal Mixed Effects Models , 2002, Biometrics.

[2]  M. Dette,et al.  Standardized optimal designs for binary response experiments , 1997 .

[3]  M. Ghosh,et al.  Design Issues for Generalized Linear Models: A Review , 2006, math/0701088.

[4]  W K Wong,et al.  Minimax D‐Optimal Designs for the Logistic Model , 2000, Biometrics.

[5]  David C. Woods,et al.  Block designs for experiments with non-normal response , 2009 .

[6]  Peter M. van de Ven,et al.  Blocked Designs for Experiments With Correlated Non-Normal Response , 2011, Technometrics.

[7]  Anthony C. Atkinson,et al.  Optimum Experimental Designs, with SAS , 2007 .

[8]  Lorens A. Imhof,et al.  Maximin designs for exponential growth models and heteroscedastic polynomial models , 2001 .

[9]  Paola Sebastiani,et al.  First-order optimal designs for non-linear models , 1998 .

[10]  Linda M. Haines,et al.  14 Designs for nonlinear and generalized linear models , 1996, Design and analysis of experiments.

[11]  France Mentré,et al.  Further Developments of the Fisher Information Matrix in Nonlinear Mixed Effects Models with Evaluation in Population Pharmacokinetics , 2003, Journal of biopharmaceutical statistics.

[12]  I. Ford,et al.  The Use of a Canonical Form in the Construction of Locally Optimal Designs for Non‐Linear Problems , 1992 .

[13]  H. Chernoff Locally Optimal Designs for Estimating Parameters , 1953 .

[14]  Weng Kee Wong,et al.  An Introduction to Optimal Designs for Social and Biomedical Research , 2009 .

[15]  Valerii V. Fedorov,et al.  Adaptive designs for selecting drug combinations based on efficacy–toxicity response , 2008 .

[16]  C. F. Wu,et al.  Efficient Sequential Designs with Binary Data , 1985 .

[17]  Martijn P. F. Berger,et al.  Maximin D-optimal designs for binary longitudinal responses , 2008, Comput. Stat. Data Anal..

[18]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[19]  M. A. Chipman,et al.  D-Optimal Design for Generalized Linear , 2007 .

[20]  Holger Dette,et al.  Designing Experiments with Respect to ‘Standardized’ Optimality Criteria , 1997 .

[21]  K. Chaloner,et al.  Optimal Bayesian design applied to logistic regression experiments , 1989 .

[22]  Holger Dette,et al.  Optimal design for additive partially nonlinear models , 2011 .

[23]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[24]  Blaza Toman,et al.  Bayesian Experimental Design , 2006 .

[25]  Christine H. Müller,et al.  Maximin efficient designs for estimating nonlinear aspects in linear models , 1995 .

[26]  Andrej Pázman,et al.  Applications of necessary and sufficient conditions for maximin efficient designs , 1998 .

[27]  S. Silvey Optimal Design: An Introduction to the Theory for Parameter Estimation , 1980 .

[28]  Heinz Holling,et al.  An Introduction to Optimal Design Some Basic Issues Using Examples From Dyscalculia Research , 2013 .

[29]  Holger Dette,et al.  A note on Bayesian c- and D-optimal designs in nonlinear regression models , 1996 .

[30]  Hovav A. Dror,et al.  Robust Experimental Design for Multivariate Generalized Linear Models , 2006, Technometrics.

[31]  D. Lindley On a Measure of the Information Provided by an Experiment , 1956 .

[32]  Khidir M. Abdelbasit,et al.  Experimental Design for Binary Data , 1983 .

[33]  Kathryn Chaloner,et al.  Bayesian Experimental Design for Nonlinear Mixed‐Effects Models with Application to HIV Dynamics , 2004, Biometrics.

[34]  Peter Goos,et al.  A Comparison of Different Bayesian Design Criteria to Compute Efficient Conjoint Choice Experiments , 2008 .

[35]  David C. Woods,et al.  Designs for Generalized Linear Models With Several Variables and Model Uncertainty , 2006, Technometrics.

[36]  Holger Dette,et al.  On the number of support points of maximin and Bayesian optimal designs , 2007, 0708.1901.

[37]  David M. Steinberg,et al.  Fast Computation of Designs Robust to Parameter Uncertainty for Nonlinear Settings , 2009, Technometrics.

[38]  W. Wong,et al.  Optimal two-point designs for the michaelis-menten model with heteroscedastic errors , 1998 .

[39]  K. Chaloner Bayesian design for estimating the turning point of a quadratic regression , 1989 .

[40]  John Hinde,et al.  On Bayesian D‐optimum Design Criteria and the Equivalence Theorem in Non‐linear Models , 1997 .