Antibacterial activities of epiroprim, a new dihydrofolate reductase inhibitor, alone and in combination with dapsone

Epiroprim (EPM; Ro 11-8958) is a new selective inhibitor of microbial dihydrofolate reductase. EPM displayed excellent activity against staphylococci, enterococci, pneumococci, and streptococci which was considerably better than that of trimethoprim (TMP). EPM was also active against TMP-resistant strains, although the MICs were still relatively high. Its combination with dapsone (DDS) was synergistic and showed as in vitro activity superior to that of the TMP combination with sulfamethoxazole (SMZ). The EPM-DDS (ratio, 1:19) combination inhibited more than 90% of all important gram-positive pathogens at a concentration of 2 + 38 micrograms/ml. Only a few highly TMP-resistant staphylococci and enterococci were not inhibited. EPM was also more active than TMP against Moraxella catarrhalis, Neisseria meningitidis, and Bacteroides spp., but it was less active than TMP against all other gram-negative bacteria tested. Atypical mycobacteria were poorly susceptible to EPM, but the combination with DDS was synergistic and active at concentrations most probably achievable in biological fluids (MICs from 0.25 +/- 4.75 to 4 + 76 micrograms/ml). EPM and the EPM-DDS combination were also highly active against experimental staphylococcal infections in a mouse septicemia model. The combination EPM-DDS has previously been shown to exhibit activity in Pneumocystis carinii and Toxoplasma models and, as shown in the present study, also shows good activity against a broad range of bacteria including many strains resistant to TMP and TMP-SMZ.