Properties of hierarchical Archimedean copulas

Abstract In this paper we analyse the properties of hierarchical Archimedean copulas. This class is a generalisation of the Archimedean copulas and allows for general non-exchangeable dependency structures. We show that the structure of the copula can be uniquely recovered from all bivariate margins. We derive the distribution of the copula values, which is particularly useful for tests and constructing confidence intervals. Furthermore, we analyse dependence orderings, multivariate dependence measures, and extreme value copulas. We pay special attention to the tail dependencies and derive several tail dependence indices for general hierarchical Archimedean copulas.

[1]  Yarema Okhrin,et al.  On the structure and estimation of hierarchical Archimedean copulas , 2013 .

[2]  E. Wolff N-dimensional measures of dependence. , 1980 .

[3]  G. Shorack Probability for Statisticians , 2000 .

[4]  Johan Segers,et al.  Nonparametric estimation of the tree structure of a nested Archimedean copula , 2013, Comput. Stat. Data Anal..

[5]  P. Billingsley,et al.  Probability and Measure , 1980 .

[6]  S. Resnick A Probability Path , 1999 .

[7]  R. Nelsen,et al.  On the relationship between Spearman's rho and Kendall's tau for pairs of continuous random variables , 2007 .

[8]  Marius Hofert,et al.  Sampling Archimedean copulas , 2008, Comput. Stat. Data Anal..

[9]  Arthur Charpentier,et al.  Tails of multivariate Archimedean copulas , 2009, J. Multivar. Anal..

[10]  Bruno Rémillard,et al.  On Kendall's Process , 1996 .

[11]  Alexander J. McNeil,et al.  Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.

[12]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[13]  Friedrich Schmid,et al.  Nonparametric inference on multivariate versions of Blomqvist’s beta and related measures of tail dependence , 2007 .

[14]  S. Bernstein,et al.  Sur les fonctions absolument monotones , 1929 .

[15]  Friedrich Schmid,et al.  Multivariate Extensions of Spearman's Rho and Related Statistics , 2007 .

[16]  I. Olkin,et al.  Families of Multivariate Distributions , 1988 .

[17]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[18]  C. Genest,et al.  A characterization of gumbel's family of extreme value distributions , 1989 .

[19]  V. Durrleman,et al.  A Note About the Conjecture on Spearman's Rho and Kendall's Tau , 2000 .

[20]  A. McNeil Sampling nested Archimedean copulas , 2008 .

[21]  Mark A. McComb Comparison Methods for Stochastic Models and Risks , 2003, Technometrics.

[22]  C. Kimberling A probabilistic interpretation of complete monotonicity , 1974 .

[23]  H. Joe Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .

[24]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .

[25]  Yung-Pin Chen A note on the relationship between Spearman's ρ and Kendall's τ for extreme order statistics , 2007 .

[26]  PAUL EMBRECHTS,et al.  Modelling of extremal events in insurance and finance , 1994, Math. Methods Oper. Res..

[27]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[28]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[29]  Roger B. Nelsen,et al.  Dependence and Order in Families of Archimedean Copulas , 1997 .

[30]  Wolfgang Karl Härdle,et al.  Valuation of collateralized debt obligations with hierarchical Archimedean copulae , 2013 .

[31]  J. M. Bevan,et al.  Rank Correlation Methods , 1949 .

[32]  Charles E. Heckler,et al.  Applied Multivariate Statistical Analysis , 2005, Technometrics.

[33]  S. Resnick Heavy-Tail Phenomena: Probabilistic and Statistical Modeling , 2006 .

[34]  Martin T. Wells,et al.  Model Selection and Semiparametric Inference for Bivariate Failure-Time Data , 2000 .