Hyaluronic acid-quantum dot conjugates for in vivo lymphatic vessel imaging.

A simple and novel electrostatic coupling method is reported, which provides a hyaluronic acid-quantum dot conjugate (HA-QD) that is colloidally stable and size-tunable from 50 to 120 nm. The HA-QDs show cancer targeting efficiency, which suggests diagnostic and imaging applications. The conjugates are also demonstrated for the fluorescence staining capability for lymphatic vessels in vitro and in vivo. Using the HA-QDs in a small animal model, lymphatic vessels are visualized real-time in vivo for days. Comprehensive cytotoxicity evaluations are made for the conjugates and the unconjugated counterpart. The HA-QDs showcase the potentials toward cancer imaging and real-time visualization of changes in lymphatic vessels such as lymphangiogenesis.

[1]  Igor L. Medintz,et al.  Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery. , 2006, Bioconjugate chemistry.

[2]  J. Matthew Mauro,et al.  Long-term multiple color imaging of live cells using quantum dot bioconjugates , 2003, Nature Biotechnology.

[3]  Sanjiv S Gambhir,et al.  Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. , 2006, Nano letters.

[4]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[5]  Xiaogang Peng,et al.  Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility , 1997 .

[6]  P. Jain,et al.  (CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 2009 .

[7]  M. Karkkainen,et al.  Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. , 2004, Trends in immunology.

[8]  Philippe Rostaing,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking , 2003, Science.

[9]  S. Bhatia,et al.  Probing the Cytotoxicity Of Semiconductor Quantum Dots. , 2004, Nano letters.

[10]  D. Jackson,et al.  LYVE-1, a New Homologue of the CD44 Glycoprotein, Is a Lymph-specific Receptor for Hyaluronan , 1999, The Journal of cell biology.

[11]  K. Alitalo,et al.  Lymphangiogenesis and cancer metastasis. , 2006 .

[12]  Albert van den Berg,et al.  Quantum dots based probes conjugated to annexin V for photostable apoptosis detection and imaging. , 2006, Nano letters.

[13]  W. Kimpton,et al.  Uptake and degradation of hyaluronan in lymphatic tissue. , 1988, The Biochemical journal.

[14]  Xiaogang Peng,et al.  Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. , 2002, Angewandte Chemie.

[15]  Rakesh K Jain,et al.  Lymphatic Metastasis in the Absence of Functional Intratumor Lymphatics , 2002, Science.

[16]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[17]  Sai T Reddy,et al.  Exploiting lymphatic transport and complement activation in nanoparticle vaccines , 2007, Nature Biotechnology.

[18]  Steffen Hackbarth,et al.  Long-term exposure to CdTe quantum dots causes functional impairments in live cells. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[19]  Tim Liedl,et al.  Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. , 2005, Nano letters.

[20]  P. N. Wang,et al.  Enhancement of Intracellular Delivery of CdTe Quantum Dots (QDs) to Living Cells by Tat Conjugation , 2007, Journal of Fluorescence.

[21]  Tony Yuen,et al.  Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization , 2005, Nucleic acids research.

[22]  J. Matthew Mauro,et al.  Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein , 2000 .

[23]  Martin Hofmann,et al.  A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells , 1991, Cell.

[24]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[25]  Hong Qing,et al.  Quantum dot-labeled aptamer nanoprobes specifically targeting glioma cells , 2008, Nanotechnology.

[26]  Rebekah Drezek,et al.  Evaluation of quantum dot cytotoxicity based on intracellular uptake. , 2006, Small.

[27]  Sai T Reddy,et al.  In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[28]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[29]  M. Levy,et al.  Quantum‐Dot Aptamer Beacons for the Detection of Proteins , 2005, Chembiochem : a European journal of chemical biology.

[30]  Masato Yasuhara,et al.  Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification , 2004 .

[31]  D. Ferguson,et al.  Mouse LYVE-1 Is an Endocytic Receptor for Hyaluronan in Lymphatic Endothelium* , 2001, The Journal of Biological Chemistry.

[32]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[33]  S. Pathak,et al.  Hydroxylated quantum dots as luminescent probes for in situ hybridization. , 2001, Journal of the American Chemical Society.

[34]  Hedi Mattoussi,et al.  Avidin: a natural bridge for quantum dot-antibody conjugates. , 2002, Journal of the American Chemical Society.

[35]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[36]  L. Coussens,et al.  Distinctive features of angiogenesis and lymphangiogenesis determine their functionality during de novo tumor development. , 2007, Cancer research.

[37]  D. Ly,et al.  Multicolor Coding of Cells with Cationic Peptide Coated Quantum Dots , 2004 .