Precipitation of Marinoan cap carbonate from Mn-enriched seawater

[1]  B. Shen,et al.  Active methanogenesis during the melting of Marinoan snowball Earth , 2021, Nature Communications.

[2]  B. Shen,et al.  Surface ocean nitrate-limitation in the aftermath of Marinoan snowball Earth: Evidence from the Ediacaran Doushantuo Formation in the western margin of the Yangtze Block, South China , 2020 .

[3]  Lin Dong,et al.  Continental weathering intensity during the termination of the Marinoan Snowball Earth: Mg isotope evidence from the basal Doushantuo cap carbonate in South China , 2020 .

[4]  Feng Yang,et al.  Characteristics and controlling factors of dolomite karst reservoirs of the Sinian Dengying Formation, central Sichuan Basin, southwestern China , 2020, Precambrian Research.

[5]  Chuanming Zhou,et al.  Early animal evolution and highly oxygenated seafloor niches hosted by microbial mats , 2019, Scientific Reports.

[6]  M. Wallace,et al.  Neoproterozoic marine dolomite hardgrounds and their relationship to cap dolomites , 2019, Precambrian Research.

[7]  Yong Fu,et al.  Predominantly Ferruginous Conditions in South China during the Marinoan Glaciation: Insight from REE Geochemistry of the Syn-glacial Dolostone from the Nantuo Formation in Guizhou Province, China , 2019, Minerals.

[8]  S. Xiao,et al.  Calibrating the terminations of Cryogenian global glaciations , 2019, Geology.

[9]  Ting Nie,et al.  Is seawater geochemical composition recorded in marine carbonate? Evidence from iron and manganese contents in Late Devonian carbonate rocks , 2019, Acta Geochimica.

[10]  A. Maloof,et al.  An early diagenetic deglacial origin for basal Ediacaran “cap dolostones” , 2018, Earth and Planetary Science Letters.

[11]  Chuanming Zhou,et al.  Germanium/silica ratio and rare earth element composition of silica-filling in sheet cracks of the Doushantuo cap carbonates, South China: Constraining hydrothermal activity during the Marinoan snowball Earth glaciation , 2019, Precambrian Research.

[12]  Jinghong Yang,et al.  Positive cerium anomaly in the Doushantuo cap carbonates from the Yangtze platform, South China: Implications for intermediate water column manganous conditions in the aftermath of the Marinoan glaciation , 2019, Precambrian Research.

[13]  C. Grengg,et al.  Barium partitioning in calcite and aragonite as a function of growth rate , 2018, Geochimica et Cosmochimica Acta.

[14]  A. J. Kaufman,et al.  Transient marine euxinia at the end of the terminal Cryogenian glaciation , 2018, Nature Communications.

[15]  F. Macdonald,et al.  Sr and Mg isotope geochemistry of the basal Ediacaran cap limestone sequence of Mongolia: Implications for carbonate diagenesis, mixing of glacial meltwaters, and seawater chemistry in the aftermath of Snowball Earth , 2018, Chemical Geology.

[16]  Chuanming Zhou,et al.  Cyclic cold climate during the Nantuo Glaciation: Evidence from the Cryogenian Nantuo Formation in the Yangtze Block, South China , 2018, Precambrian Research.

[17]  M. Wallace,et al.  The Tonian Beck Spring Dolomite: Marine dolomitization in a shallow, anoxic sea , 2018, Sedimentary Geology.

[18]  Huaichun Wu,et al.  Cyclostratigraphic constraints on the duration of the Datangpo Formation and the onset age of the Nantuo (Marinoan) glaciation in South China , 2018 .

[19]  A. Stepanov,et al.  Whole rock and discrete pyrite geochemistry as complementary tracers of ancient ocean chemistry: An example from the Neoproterozoic Doushantuo Formation, China , 2017 .

[20]  E. Tziperman,et al.  Snowball Earth climate dynamics and Cryogenian geology-geobiology , 2017, Science Advances.

[21]  D. Abbot,et al.  Persistence of a freshwater surface ocean after a snowball Earth , 2017 .

[22]  S. Xiao,et al.  Episode of intense chemical weathering during the termination of the 635 Ma Marinoan glaciation , 2016, Proceedings of the National Academy of Sciences.

[23]  N. Planavsky,et al.  Oceanic oxygenation events in the anoxic Ediacaran ocean , 2016, Geobiology.

[24]  B. Shen,et al.  Ocean oxidation during the deposition of basal Ediacaran Doushantuo cap carbonates in the Yangtze Platform, South China , 2016 .

[25]  M. Moczydłowska Algal Affinities of Ediacaran and Cambrian Organic-Walled Microfossils with Internal Reproductive Bodies: Tanarium and Other Morphotypes , 2016 .

[26]  A. Knoll,et al.  Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation , 2015, Nature.

[27]  F. Macdonald,et al.  A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations , 2015 .

[28]  M. Zhai,et al.  Carbon isotopes, sulfur isotopes, and trace elements of the dolomites from the Dengying Formation in Zhenba area, southern Shaanxi: Implications for shallow water redox conditions during the terminal Ediacaran , 2015, Science China Earth Sciences.

[29]  X. Shang,et al.  New SIMS U–Pb zircon age and its constraint on the beginning of the Nantuo glaciation , 2015 .

[30]  A. Nédélec,et al.  Aragonite Crystal Fans In Neoproterozoic Cap Carbonates: A Case Study From Brazil and Implications For the Post-Snowball Earth Coastal Environment , 2015 .

[31]  Christopher T. Reinhard,et al.  Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals , 2014, Science.

[32]  S. Xiao,et al.  Cell differentiation and germ–soma separation in Ediacaran animal embryo-like fossils , 2014, Nature.

[33]  X. Shang,et al.  High-resolution biostratigraphic and chemostratigraphic data from the Chenjiayuanzi section of the Doushantuo Formation in the Yangtze Gorges area, South China: Implication for subdivision and global correlation of the Ediacaran System , 2014 .

[34]  N. Planavsky,et al.  The rise of oxygen in Earth’s early ocean and atmosphere , 2014, Nature.

[35]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[36]  T. Sun,et al.  The sulfur isotope signatures of Marinoan deglaciation captured in Neoproterozoic shallow-to-deep cap carbonate from South China , 2013 .

[37]  A. Anbar,et al.  Ocean oxygenation in the wake of the Marinoan glaciation , 2012, Nature.

[38]  K. Johnson,et al.  Benthic manganese fluxes along the Oregon–California continental shelf and slope , 2012 .

[39]  D. McKirdy,et al.  The paragenetic history of a Marinoan cap carbonate , 2012 .

[40]  Chuanming Zhou,et al.  Diverse small spinose acritarchs from the Ediacaran Doushantuo Formation, South China , 2011 .

[41]  P. Cartigny,et al.  A carbon isotope challenge to the snowball Earth , 2011, Nature.

[42]  R. Drysdale,et al.  Neoproterozoic aragonite-dolomite seas? Widespread marine dolomite precipitation in Cryogenian reef complexes , 2011 .

[43]  Xiaoying Shi,et al.  Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551Ma) in South China , 2011 .

[44]  P. Hoffman Strange bedfellows: glacial diamictite and cap carbonate from the Marinoan (635 Ma) glaciation in Namibia , 2011 .

[45]  F. Macdonald,et al.  Sheet-crack cements and early regression in Marinoan (635 Ma) cap dolostones: Regional benchmarks of vanishing ice-sheets? , 2010 .

[46]  Chuanming Zhou,et al.  Timing the deposition of 17O-depleted barite at the aftermath of Nantuo glacial meltdown in South China , 2010 .

[47]  A. Sessions,et al.  A Stratified Redox Model for the Ediacaran Ocean , 2010, Science.

[48]  M. Tucker,et al.  Geological Background to Carbonate Sedimentation , 2009 .

[49]  P. Hoffman,et al.  A palaeogeographic context for Neoproterozoic glaciation , 2009 .

[50]  J. A. Simo,et al.  Pervasive Dolomitization of a Subtidal Carbonate Ramp, Silurian and Devonian, Illinois Basin, USA , 2009 .

[51]  P. Smart,et al.  Dolomitization by Near‐Normal Seawater? Field Evidence from the Bahamas , 2009 .

[52]  L. Land,et al.  Progressive Recrystallization and Stabilization of Early‐Stage Dolomite: Lower Ordovician Ellenburger Group, West Texas , 2009 .

[53]  P. E. Brown,et al.  Burial Dolomitization of the Middle Ordovician Glenwood Formation by Evaporitic Brines, Michigan Basin , 2009 .

[54]  A. M'rabet,et al.  Burial Dolomitization of Organic‐Rich and Organic‐Poor Carbonates, Jurassic of Central Tunisia , 2009 .

[55]  B. Tebo,et al.  Rapid, oxygen-dependent microbial Mn(II) oxidation kinetics at sub-micromolar oxygen concentrations in the Black Sea suboxic zone , 2009 .

[56]  A. Knoll,et al.  Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry , 2008, Science.

[57]  Jianwu Tang,et al.  Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: I. Sr incorporation , 2008 .

[58]  M. Kennedy,et al.  Snowball Earth termination by destabilization of equatorial permafrost methane clathrate , 2008, Nature.

[59]  S. Xiao,et al.  Carbon isotope evidence for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonate in south China , 2008 .

[60]  A. J. Kaufman,et al.  Stratification and mixing of a post-glacial Neoproterozoic ocean: Evidence from carbon and sulfur isotopes in a cap dolostone from northwest China , 2008 .

[61]  A. J. Kaufman,et al.  Carbon Isotope Variability across the Ediacaran Yangtze Platform in South China: Implications for a Large Surface-to-Deep Ocean δ13C Gradient , 2007 .

[62]  D. Schrag,et al.  Are basal Ediacaran (635 Ma) post-glacial “cap dolostones” diachronous? , 2007 .

[63]  S. Xiao,et al.  The diversification and extinction of Doushantuo‐Pertatataka acritarchs in South China: causes and biostratigraphic significance , 2007 .

[64]  A. Knoll,et al.  Doushantuo embryos preserved inside diapause egg cysts , 2007, Nature.

[65]  H. Strauss,et al.  Barite-bearing cap dolostones of the Taoudéni Basin, northwest Africa: Sedimentary and isotopic evidence for methane seepage after a Neoproterozoic glaciation , 2007 .

[66]  D. Canfield,et al.  Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life , 2007, Science.

[67]  J. Grotzinger,et al.  Oxidation of the Ediacaran Ocean , 2006, Nature.

[68]  A. Nédélec,et al.  Chemostratigraphy of the Neoproterozoic Mirassol d'Oeste cap dolostones (Mato Grosso, Brazil): An alternative model for Marinoan cap dolostone formation , 2006 .

[69]  N. Christie‐Blick,et al.  Stratigraphy, Sedimentary Structures, and Textures of the Late Neoproterozoic Doushantuo Cap Carbonate in South China , 2006 .

[70]  G. Shields Neoproterozoic cap carbonates: a critical appraisal of existing models and the plumeworld hypothesis , 2005 .

[71]  Falk Pollehne,et al.  Manganese(II) oxidation driven by lateral oxygen intrusions in the western Black Sea , 2005 .

[72]  Wei Wang,et al.  U-Pb Ages from the Neoproterozoic Doushantuo Formation, China , 2005, Science.

[73]  N. Mahowald,et al.  Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate , 2005, Science.

[74]  K. Hoffmann,et al.  U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation , 2004 .

[75]  N. Christie‐Blick,et al.  Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates , 2003, Nature.

[76]  L. Hardie Secular variations in Precambrian seawater chemistry and the timing of Precambrian aragonite seas and calcite seas , 2003 .

[77]  D. Schrag,et al.  Aftermath of a snowball Earth , 2003 .

[78]  D. Schrag,et al.  The snowball Earth hypothesis: testing the limits of global change , 2002 .

[79]  N. Christie‐Blick,et al.  Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals? , 2002 .

[80]  Atsuyuki Ohta,et al.  REE(III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2 , 2001 .

[81]  J. Warren Dolomite: occurrence, evolution and economically important associations , 2000 .

[82]  John W. Geissman,et al.  Refining Rodinia: geologic evidence for the Australia-western U , 1999 .

[83]  Frank T. Manheim,et al.  Cobalt-Rich Ferromanganese Crusts in the Pacific , 1999 .

[84]  S. Stanley,et al.  Hypercalcification: Paleontology Links Plate Tectonics and Geochemistry to Sedimentology , 1999 .

[85]  Halverson,et al.  A neoproterozoic snowball earth , 1998, Science.

[86]  M. Kennedy Stratigraphy, sedimentology, and isotopic geochemistry of Australian Neoproterozoic postglacial cap dolostones; deglaciation, delta 13 C excursions, and carbonate precipitation , 1996 .

[87]  A. Schultz,et al.  Mid-Ocean Ridge Hydrothermal Fluxes and the Chemical Composition of the Ocean , 1996 .

[88]  L. Hardie Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. , 1996 .

[89]  A. Knoll,et al.  Anomalous carbonate precipitates: is the Precambrian the key to the Permian? , 1995, Palaios.

[90]  S. Burns,et al.  Recrystallization of dolomite: evidence from the Monterey Formation (Miocene), California , 1994 .

[91]  D. Canfield,et al.  The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. , 1993, Geochimica et cosmochimica acta.

[92]  T. Coley,et al.  Manganese Flux from Continental Margin Sediments in a Transect Through the Oxygen Minimum , 1992, Science.

[93]  S. Mazzullo,et al.  Early diagenetic recrystallization of Holocene (<3000 years old) peritidal dolomites, Ambergris Cay, Belize , 1992 .

[94]  R. Wogelius,et al.  Trace element zoning in dolomite: Proton microprobe data and thermodynamic constraints on fluid compositions , 1992 .

[95]  D. Lovley Dissimilatory Fe(III) and Mn(IV) reduction , 1991, Microbiological reviews.

[96]  L. M. Walter,et al.  Iron and manganese incorporation into calcite: Effects of growth kinetics, temperature and solution chemistry , 1990 .

[97]  S. Burns,et al.  A geochemical study of dolomite in the Monterey Formation, California , 1987 .

[98]  Robert B. Lorens,et al.  Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate , 1981 .