Microstructure of a spatial map in the entorhinal cortex

The ability to find one's way depends on neural algorithms that integrate information about place, distance and direction, but the implementation of these operations in cortical microcircuits is poorly understood. Here we show that the dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment. Its key unit is the ‘grid cell’, which is activated whenever the animal's position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment. Grids of neighbouring cells share a common orientation and spacing, but their vertex locations (their phases) differ. The spacing and size of individual fields increase from dorsal to ventral dMEC. The map is anchored to external landmarks, but persists in their absence, suggesting that grid cells may be part of a generalized, path-integration-based map of the spatial environment.

[1]  L. Nadel,et al.  The Hippocampus as a Cognitive Map , 1978 .

[2]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[3]  M. Eckardt The Hippocampus as a Cognitive Map , 1980 .

[4]  G. Paxinos The Rat nervous system , 1985 .

[5]  R. Muller,et al.  The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  M. Witter,et al.  Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region , 1989, Progress in Neurobiology.

[7]  K. Mori,et al.  A columnar arrangement of dendritic processes of entorhinal cortex neurons revealed by a monoclonal antibody , 1989, Brain Research.

[8]  R. Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[10]  C. Gallistel The organization of learning , 1990 .

[11]  E. Bostock,et al.  Experience‐dependent modifications of hippocampal place cell firing , 1991, Hippocampus.

[12]  L. Nadel The hippocampus and space revisited , 1991, Hippocampus.

[13]  E. Buhl,et al.  Ultrastructure and aspects of functional organization of pyramidal and nonpyramidal entorhinal projection neurons contributing to the perforant path , 1991, The Journal of comparative neurology.

[14]  R. Muller,et al.  The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[16]  B. McNaughton,et al.  Place cells, head direction cells, and the learning of landmark stability , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  M. Witter,et al.  The Rat Nervous System , 1995 .

[18]  P E Sharp,et al.  Influences of vestibular and visual motion information on the spatial firing patterns of hippocampal place cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  W E Skaggs,et al.  Interactions between location and task affect the spatial and directional firing of hippocampal neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  J S Taube,et al.  Preferential use of the landmark navigational system by head direction cells in rats. , 1995, Behavioral neuroscience.

[21]  W E Skaggs,et al.  Deciphering the hippocampal polyglot: the hippocampus as a path integration system. , 1996, The Journal of experimental biology.

[22]  M. Witter,et al.  Entorhinal-Hippocampal Interactions Revealed by Real-Time Imaging , 1996, Science.

[23]  J. O’Keefe,et al.  Geometric determinants of the place fields of hippocampal neurons , 1996, Nature.

[24]  K M Gothard,et al.  Dynamics of Mismatch Correction in the Hippocampal Ensemble Code for Space: Interaction between Path Integration and Environmental Cues , 1996, The Journal of Neuroscience.

[25]  K. Jeffery,et al.  Directional control of hippocampal place fields , 1997, Experimental Brain Research.

[26]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[27]  B L McNaughton,et al.  Path Integration and Cognitive Mapping in a Continuous Attractor Neural Network Model , 1997, The Journal of Neuroscience.

[28]  D. Touretzky,et al.  Cognitive maps beyond the hippocampus , 1997, Hippocampus.

[29]  Floris G. Wouterlood,et al.  GABAergic Presubicular Projections to the Medial Entorhinal Cortex of the Rat , 1997, The Journal of Neuroscience.

[30]  E. Rolls,et al.  Neural networks and brain function , 1998 .

[31]  J. Taube Head direction cells and the neurophysiological basis for a sense of direction , 1998, Progress in Neurobiology.

[32]  A. Redish Beyond the Cognitive Map: From Place Cells to Episodic Memory , 1999 .

[33]  P E Sharp,et al.  Complimentary roles for hippocampal versus subicular/entorhinal place cells in coding place, context, and events , 1999, Hippocampus.

[34]  A. Lörincz,et al.  Two‐Phase Computational Model Training Long‐Term Memories in the Entorhinal‐Hippocampal Region , 2000, Annals of the New York Academy of Sciences.

[35]  M. Wilson,et al.  Trajectory Encoding in the Hippocampus and Entorhinal Cortex , 2000, Neuron.

[36]  H. Eichenbaum,et al.  Hippocampal Neurons Encode Information about Different Types of Memory Episodes Occurring in the Same Location , 2000, Neuron.

[37]  R. S. Jones,et al.  Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro , 2000, Neuroscience.

[38]  R. Biegler Possible uses of path integration in animal navigation , 2000 .

[39]  M. Hasselmo,et al.  Graded persistent activity in entorhinal cortex neurons , 2002, Nature.

[40]  M. Fyhn,et al.  Hippocampal Neurons Responding to First-Time Dislocation of a Target Object , 2002, Neuron.

[41]  M. Quirk,et al.  Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Recall , 2002, Science.

[42]  R. Clark,et al.  The medial temporal lobe. , 2004, Annual review of neuroscience.

[43]  K. Rockland,et al.  Some thoughts on cortical minicolumns , 2004, Experimental Brain Research.

[44]  J. Knierim,et al.  Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3 , 2004, Nature.

[45]  J. O’Keefe,et al.  Hippocampal place units in the freely moving rat: Why they fire where they fire , 1978, Experimental Brain Research.

[46]  E. Save,et al.  Evidence for entorhinal and parietal cortices involvement in path integration in the rat , 2004, Experimental Brain Research.

[47]  Ariane S Etienne,et al.  Path integration in mammals , 2004, Hippocampus.

[48]  A. Treves,et al.  Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1 , 2004, Science.

[49]  H. Mittelstaedt,et al.  Homing by path integration in a mammal , 1980, Naturwissenschaften.

[50]  Daniel L. Schacter,et al.  Spatial Representation in the Entorhinal Cortex , 2004 .

[51]  K. Lingenhöhl,et al.  Morphological characterization of rat entorhinal neurons in vivo: soma-dendritic structure and axonal domains , 2004, Experimental Brain Research.

[52]  M. Moser,et al.  Spatial Memory in the Rat Requires the Dorsolateral Band of the Entorhinal Cortex , 2005, Neuron.