Stronger Form of an M-Part Sperner Theorem
暂无分享,去创建一个
[1] P. Erdös. On a lemma of Littlewood and Offord , 1945 .
[2] Jerrold R. Griggs. The Littlewood-Offord Problem: Tightest Packing and an M-part Sperner Theorem , 1980, Eur. J. Comb..
[3] E. Sperner. Ein Satz über Untermengen einer endlichen Menge , 1928 .
[4] D. Kleitman,et al. Proof techniques in the theory of finite sets , 1978 .
[5] G. Samal. On the Number of Real Roots of a Random Algebraic Equation , 1962 .
[6] Daniel J. Kleitman,et al. A three part Sperner theorem , 1977, Discret. Math..
[7] de Ng Dick Bruijn,et al. On the set of divisors of a number , 1951 .
[8] Gyula O. H. Katona. A generalization of some generalizations of Sperner's theorem , 1972 .
[9] Gyula O. H. Katona. Families of subsets having no subset containing another one with small difference , 1972 .
[10] Daniel J. Kleitman,et al. On a lemma of Littlewood and Offord on the distribution of certain sums , 1965 .
[11] J. Littlewood,et al. On the Number of Real Roots of a Random Algebraic Equation , 1938 .
[12] John Riordan,et al. Arrangements on Chessboards , 1972, J. Comb. Theory, Ser. A.