Computing Vertex-Surjective Homomorphisms to Partially Reflexive Trees
暂无分享,去创建一个
[1] NARAYAN VIKAS,et al. Computational Complexity of Compaction to Reflexive Cycles , 2002, SIAM J. Comput..
[2] Robin Thomas,et al. Deciding First-Order Properties for Sparse Graphs , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.
[3] Reinhard Diestel,et al. Graph Theory , 1997 .
[4] Narayan Vikas,et al. Compaction, Retraction, and Constraint Satisfaction , 2004, SIAM J. Comput..
[5] Jirí Fiala,et al. A complete complexity classification of the role assignment problem , 2005, Theor. Comput. Sci..
[6] Tomás Feder,et al. The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..
[7] Maurizio Patrignani,et al. The Complexity of the Matching-Cut Problem , 2001, WG.
[8] P. Hell,et al. Sparse pseudo-random graphs are Hamiltonian , 2003 .
[9] Pavol Hell,et al. List Homomorphisms to Reflexive Graphs , 1998, J. Comb. Theory, Ser. B.
[10] Jaroslav Nesetril,et al. On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.
[11] Stephan Kreutzer,et al. Parameterized Complexity of First-Order Logic , 2009, Electron. Colloquium Comput. Complex..
[12] Ge Xia,et al. Strong computational lower bounds via parameterized complexity , 2006, J. Comput. Syst. Sci..
[13] Celina M. H. de Figueiredo,et al. Finding H-partitions efficiently , 2005, RAIRO Theor. Informatics Appl..
[14] Jirí Fiala,et al. Locally constrained graph homomorphisms - structure, complexity, and applications , 2008, Comput. Sci. Rev..
[15] Simone Dantas,et al. 2k2-partition of Some Classes of Graphs , 2012, Discret. Appl. Math..
[16] Russell Impagliazzo,et al. Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..
[17] Celina M. H. de Figueiredo,et al. The external constraint 4 nonempty part sandwich problem , 2011, Discret. Appl. Math..
[18] Jaroslav Nesetril,et al. Graphs and homomorphisms , 2004, Oxford lecture series in mathematics and its applications.
[19] Gustav Nordh,et al. Retractions to Pseudoforests , 2010, SIAM J. Discret. Math..
[20] Narayan Vikas,et al. A complete and equal computational complexity classification of compaction and retraction to all graphs with at most four vertices and some general results , 2005, J. Comput. Syst. Sci..
[21] Daniël Paulusma,et al. Covering graphs with few complete bipartite subgraphs , 2009, Theor. Comput. Sci..