TGF-β signaling in esophageal squamous cell carcinoma

[1]  H. Kuwano,et al.  Increased expression of c‐Ski as a co‐repressor in transforming growth factor‐β signaling correlates with progression of esophageal squamous cell carcinoma , 2004, International journal of cancer.

[2]  T. Nakajima,et al.  Reduced expression of transforming growth factor‐β receptors is an unfavorable prognostic factor in human esophageal squamous cell carcinoma , 2003, International journal of cancer.

[3]  K. Miyazono,et al.  Regulation of TGF‐β signaling and its roles in progression of tumors , 2003 .

[4]  H. Kuwano,et al.  High-level expression of the Smad ubiquitin ligase Smurf2 correlates with poor prognosis in patients with esophageal squamous cell carcinoma. , 2002, Cancer research.

[5]  D. Neuberg,et al.  Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. , 2002, Cancer research.

[6]  H. Kuwano,et al.  Decreased Smad4 expression in the transforming growth factor‐β signaling pathway during progression of esophageal squamous cell carcinoma , 2002, Cancer.

[7]  S. Natsugoe,et al.  Smad4 and transforming growth factor beta1 expression in patients with squamous cell carcinoma of the esophagus. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[8]  H. Shirasawa,et al.  Alteration of integrin expression relates to malignant progression of human papillomavirus-immortalized esophageal keratinocytes. , 2002, Cancer letters.

[9]  F. Sato,et al.  Gene expression profiling in human esophageal cancers using cDNA microarray. , 2001, Biochemical and biophysical research communications.

[10]  Z Chen,et al.  Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. , 2001, Clinical cancer research : an official journal of the American Association for Cancer Research.

[11]  K. Miyazono,et al.  Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins. , 2001, Molecular biology of the cell.

[12]  R. Derynck,et al.  Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Wrana,et al.  Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. , 2000, Molecular cell.

[14]  Xia Lin,et al.  Smurf2 Is a Ubiquitin E3 Ligase Mediating Proteasome-dependent Degradation of Smad2 in Transforming Growth Factor-β Signaling* 210 , 2000, The Journal of Biological Chemistry.

[15]  H. Kuwano,et al.  Mutation analysis of transforming growth factor beta type II receptor, Smad2, Smad3 and Smad4 in esophageal squamous cell carcinoma. , 2000, International journal of oncology.

[16]  A. Moustakas,et al.  Role of Smad Proteins and Transcription Factor Sp1 in p21Waf1/Cip1 Regulation by Transforming Growth Factor-β* , 2000, The Journal of Biological Chemistry.

[17]  Y. Doki,et al.  Clinical application of malignancy potential grading as a prognostic factor of human esophageal cancers. , 2000, Surgery.

[18]  J. Massagué,et al.  Transcriptional control by the TGF‐β/Smad signaling system , 2000 .

[19]  K. Miyazono TGF-β signaling by Smad proteins , 2000 .

[20]  K. Miyazono,et al.  c-Ski Acts as a Transcriptional Co-repressor in Transforming Growth Factor-β Signaling through Interaction with Smads* , 1999, The Journal of Biological Chemistry.

[21]  K. Luo,et al.  Negative Feedback Regulation of TGF-β Signaling by the SnoN Oncoprotein , 1999 .

[22]  R. Weinberg,et al.  Interaction of the Ski Oncoprotein with Smad3 Regulates TGF-β Signaling , 1999 .

[23]  Qiang Zhou,et al.  The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. , 1999, Genes & development.

[24]  Jeffrey L. Wrana,et al.  A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation , 1999, Nature.

[25]  E. Sausville,et al.  Proteasome inhibitors: a novel class of potent and effective antitumor agents. , 1999, Cancer research.

[26]  Takeo Iwama,et al.  Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis , 1999, Oncogene.

[27]  M. Hochstrasser,et al.  Substrate Targeting in the Ubiquitin System , 1999, Cell.

[28]  S. Ishii,et al.  Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and thyroid hormone receptor. , 1999, Genes & development.

[29]  K. Miyazono,et al.  Role of p300, a transcriptional coactivator, in signalling of TGF‐β , 1998, Genes to cells : devoted to molecular & cellular mechanisms.

[30]  R. Derynck,et al.  The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. , 1998, Genes & development.

[31]  T. Hunter,et al.  TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300. , 1998, Genes & development.

[32]  T. Kakegawa,et al.  Treatment of superficial cancer of the esophagus: a summary of responses to a questionnaire on superficial cancer of the esophagus in Japan. , 1998, Surgery.

[33]  R. White,et al.  Tumor Suppressing Pathways , 1998, Cell.

[34]  Kohei Miyazono,et al.  TGF-β signalling from cell membrane to nucleus through SMAD proteins , 1997, Nature.

[35]  M. Imamura,et al.  Genetic alterations in patients with esophageal cancer with short- and long-term survival rates after curative esophagectomy. , 1997, Annals of surgery.

[36]  Anita B. Roberts,et al.  Tumor suppressor activity of the TGF-β pathway in human cancers , 1996 .

[37]  K. Kinzler,et al.  Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. , 1995, Science.

[38]  T. Kuroki,et al.  Molecular and cellular features of esophageal cancer cells , 2005, Journal of Cancer Research and Clinical Oncology.

[39]  大澤 秀信 Mutation analysis of transforming growth factor β type 2 receptor, Smad2, Smad3 and Smad4 in esophageal squamous cell carcinoma , 2005 .

[40]  K. Sugimachi,et al.  The subepithelial extension of esophageal carcinoma for determining the resection margin during esophagectomy: a serial histopathologic investigation. , 2002, Surgery.

[41]  S. Natsugoe,et al.  Smad 4 and Transforming Growth Factor 1 Expression in Patients with Squamous Cell Carcinoma of the Esophagus 1 , 2002 .

[42]  Kohei Miyazono,et al.  Positive and negative regulation of TGF-β signaling , 2000 .

[43]  J. Massagué,et al.  TGF- SIGNAL TRANSDUCTION , 1998 .

[44]  K. Sugimachi,et al.  Recent advances in the diagnosis and surgical treatment of patients with carcinoma of the esophagus. , 1994, Journal of the American College of Surgeons.