A Borel-Cantelli lemma for intermittent interval maps
暂无分享,去创建一个
[1] Dong Han Kim. THE DYNAMICAL BOREL-CANTELLI LEMMA FOR INTERVAL MAPS , 2007 .
[2] D. Ruelle. Functional equation for dynamical zeta functions of Milnor-Thurston type , 1996 .
[3] C. Liverani,et al. A probabilistic approach to intermittency , 1999, Ergodic Theory and Dynamical Systems.
[4] F. Spitzer. Principles Of Random Walk , 1966 .
[5] Sharp polynomial estimates for the decay of correlations , 2002 .
[6] François Maucourant. Dynamical borel-cantelli lemma for hyperbolic spaces , 2006 .
[7] O. Sarig. Subexponential decay of correlations , 2002 .
[8] Dynamical Borel-Cantelli lemmas for gibbs measures , 1999, math/9912178.
[9] Mark Holland. Slowly mixing systems and intermittency maps , 2004, Ergodic Theory and Dynamical Systems.
[10] G. Ragsdell. Systems , 2002, Economics of Visual Art.
[11] R. Lathe. Phd by thesis , 1988, Nature.
[12] G. Illies,et al. Communications in Mathematical Physics , 2004 .
[13] Dmitry Dolgopyat,et al. Limit theorems for partially hyperbolic systems , 2003 .
[14] Marek R Rychlik,et al. Bounded variation and invariant measures , 1983 .
[15] M. Thaler. Estimates of the invariant densities of endomorphisms with indifferent fixed points , 1980 .