A variable step-size SIG algorithm for realizing the optimal adaptive FIR filter

In this paper, we propose an optimal adaptive FIR filter, in which the step-size and error nonlinearity are simultaneously optimized to maximize the decrease of the mean square deviation (MSD) of the weight error vector at each iteration. The optimal step-size and error nonlinearity are derived, and a variable step-size stochastic information gradient (VS-SIG) algorithm is developed to approximately implement the optimal adaptation. Simulation results indicate that this new algorithm achieves faster convergence rate and lower misadjustment error in comparison with other adaptive algorithms.

[1]  Paul Petrus,et al.  Robust Huber adaptive filter , 1999, IEEE Trans. Signal Process..

[2]  Deniz Erdogmus,et al.  An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems , 2002, IEEE Trans. Signal Process..

[3]  Neil J. Bershad,et al.  Saturation effects in LMS adaptive echo cancellation for binary data , 1990, IEEE Trans. Acoust. Speech Signal Process..

[4]  Chien-Cheng Tseng,et al.  Least mean p-power error criterion for adaptive FIR filter , 1994, IEEE J. Sel. Areas Commun..

[5]  Raymond H. Kwong,et al.  A variable step size LMS algorithm , 1992, IEEE Trans. Signal Process..

[6]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[7]  J.C. Principe,et al.  From linear adaptive filtering to nonlinear information processing - The design and analysis of information processing systems , 2006, IEEE Signal Processing Magazine.

[8]  Rabab K. Ward,et al.  14 FROM LINEAR ADAPTIVE FILTERING TO NONLINEAR INFORMATION PROCESSING , 2006 .

[9]  Robert Price,et al.  A useful theorem for nonlinear devices having Gaussian inputs , 1958, IRE Trans. Inf. Theory.

[10]  Badong Chen,et al.  Mean-Square Convergence Analysis of ADALINE Training With Minimum Error Entropy Criterion , 2010, IEEE Transactions on Neural Networks.

[11]  Yahong Rosa Zheng,et al.  A variable step-size lmp algorithm for heavy-tailed interference suppression in phased array radar , 2009, 2009 IEEE Aerospace conference.

[12]  Martin Janzura,et al.  Minimum Entropy of Error Principle in Estimation , 1994, Inf. Sci..

[13]  Yahong Rosa Zheng,et al.  A new variable step-size fractional lower-order moment algorithm for non-Gaussian interference environments , 2009, 2009 IEEE International Symposium on Circuits and Systems.

[14]  Henning Puder,et al.  Step-size control for acoustic echo cancellation filters - an overview , 2000, Signal Process..

[15]  T. Aboulnasr,et al.  A robust variable step size LMS-type algorithm: analysis and simulations , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[16]  Deniz Erdoğmuş,et al.  Online entropy manipulation: stochastic information gradient , 2003, IEEE Signal Processing Letters.

[17]  Teresa H. Y. Meng,et al.  Stochastic gradient adaptation under general error criteria , 1994, IEEE Trans. Signal Process..

[18]  Bernard Widrow,et al.  The least mean fourth (LMF) adaptive algorithm and its family , 1984, IEEE Trans. Inf. Theory.

[19]  Ali H. Sayed,et al.  Variable step-size NLMS and affine projection algorithms , 2004, IEEE Signal Processing Letters.

[20]  John W. Fisher,et al.  Learning from Examples with Information Theoretic Criteria , 2000, J. VLSI Signal Process..

[21]  Jacob Benesty,et al.  A New Robust Variable Step-Size NLMS Algorithm , 2008, IEEE Transactions on Signal Processing.

[22]  Anthony G. Constantinides,et al.  A novel kurtosis driven variable step-size adaptive algorithm , 1999, IEEE Trans. Signal Process..

[23]  Jacob Benesty,et al.  A robust variable step-size affine projection algorithm , 2010, Signal Process..

[24]  Zengqi Sun,et al.  Stochastic Gradient Algorithm Under (h,φ)-Entropy Criterion , 2007 .

[25]  Tareq Y. Al-Naffouri,et al.  Adaptive Filters with Error Nonlinearities: Mean-Square Analysis and Optimum Design , 2001, EURASIP J. Adv. Signal Process..