Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries.

We quantify the effects of the duration of the charge-discharge cycling period on the irreversible loss of anode material in rechargeable lithium metal batteries. We have developed a unique quantification method for the amount of dead lithium crystals (DLCs) produced by sequences of galvanostatic charge-discharge periods of variable duration τ in a coin battery of novel design. We found that the cumulative amount of dead lithium lost after 144 Coulombs circulated through the battery decreases sevenfold as τ shortens from 16 to 2 hours. We ascribe this outcome to the faster electrodissolution of the thinner dendrite necks formed in the later stages of long charging periods. This phenomenon is associated with the increased inaccessibility of the inner voids of the peripheral, late generation dendritic structures to incoming Li(+).

[1]  T. Homma,et al.  In Situ Observation of Dendrite Growth of Electrodeposited Li Metal , 2010 .

[2]  J. Chazalviel,et al.  Electrochemical aspects of the generation of ramified metallic electrodeposits. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[3]  Doron Aurbach,et al.  Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries , 2000 .

[4]  William A Goddard,et al.  Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations. , 2014, The journal of physical chemistry letters.

[5]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[6]  A. Hexemer,et al.  Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries , 2012 .

[7]  Lithium Electrode Morphology during Cycling in Lithium Cells , 1988 .

[8]  J. Yamaki,et al.  A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte , 1997 .

[9]  Thomas Hanemann,et al.  Suppressed lithium dendrite growth in lithium batteries using ionic liquid electrolytes: Investigation by electrochemical impedance spectroscopy, scanning electron microscopy, and in situ 7Li nuclear magnetic resonance spectroscopy , 2013 .

[10]  Doron Aurbach,et al.  Identification of Surface Films Formed on Lithium in Propylene Carbonate Solutions , 1987 .

[11]  W. Marsden I and J , 2012 .

[12]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[13]  J. Besenhard,et al.  Handbook of Battery Materials , 1998 .

[14]  Jean-Marie Tarascon,et al.  In situ Scanning Electron Microscopy (SEM) observation of interfaces within plastic lithium batteries , 1998 .

[15]  Charles W. Monroe,et al.  Dendrite Growth in Lithium/Polymer Systems A Propagation Model for Liquid Electrolytes under Galvanostatic Conditions , 2003 .

[16]  M. Sun,et al.  Structural and Morphological Evolution of Lead Dendrites during Electrochemical Migration , 2013, Scientific Reports.

[17]  Bok Ki Kim,et al.  The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode , 2008 .

[18]  Thomas F. Miller,et al.  Suppression of Dendrite Formation via Pulse Charging in Rechargeable Lithium Metal Batteries , 2012 .

[19]  P. H. Dederichs,et al.  Applicability of the broken-bond rule to the surface energy of the fcc metals , 2002 .

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  Masahiro Ichimura,et al.  Lithium electrode cycleability and morphology dependence on current density , 1993 .

[22]  A. Hollenkamp,et al.  Extensive charge-discharge cycling of lithium metal electrodes achieved using ionic liquid electrolytes , 2013 .

[23]  Some effects of cell dimensions on zinc electrodeposits , 1992 .

[24]  P. Kohl,et al.  Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery , 2011 .

[25]  M. Armand,et al.  Building better batteries , 2008, Nature.

[26]  Doron Aurbach,et al.  The Correlation Between Charge/Discharge Rates and Morphology, Surface Chemistry, and Performance of Li Electrodes and the Connection to Cycle Life of Practical Batteries , 1998 .

[27]  Proceedings of the Royal Society (London) , 1906, Science.

[28]  Alan C. West,et al.  Effect of Electrolyte Composition on Lithium Dendrite Growth , 2008 .

[29]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[30]  J. Yamaki,et al.  Specific surface-area measurement of lithium anode in rechargeable lithium cells , 1998 .

[31]  A. Aryanfar,et al.  Lithium Dendrite Growth Control Using Local Temperature Variation , 2014 .

[32]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[33]  J.-N. Chazalviel,et al.  Dendritic growth mechanisms in lithium/polymer cells , 1999 .

[34]  Ji‐Guang Zhang,et al.  Stabilizing the surface of lithium metal , 2014 .

[35]  J.-N. Chazalviel,et al.  In Situ Concentration Cartography in the Neighborhood of Dendrites Growing in Lithium/Polymer‐Electrolyte/Lithium Cells , 1999 .

[36]  R. Huggins Solid State Ionics , 1989 .

[37]  J. L. Barton,et al.  The electrolytic growth of dendrites from ionic solutions , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[38]  Rohan Akolkar,et al.  Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature , 2014 .

[39]  J. Steiger,et al.  Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium , 2014 .

[40]  M. Rosso,et al.  Onset of dendritic growth in lithium/polymer cells , 2001 .

[41]  B. Lucht,et al.  Surface reactions and performance of non-aqueous electrolytes with lithium metal anodes , 2008 .

[42]  D. Macfarlane,et al.  A sealed optical cell for the study of lithium-electrode|electrolyte interfaces , 2003 .

[43]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[44]  B. Liaw,et al.  A review of lithium deposition in lithium-ion and lithium metal secondary batteries , 2014 .

[45]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[46]  Sivakumar R. Challa,et al.  A thermodynamic perspective of the metastability of holey sheets: the role of curvature. , 2012, Physical chemistry chemical physics : PCCP.

[47]  Argoul,et al.  Internal structure of dense electrodeposits , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[48]  A density functional study of lithium bulk and surfaces , 1999, cond-mat/9907031.

[49]  J. Newman,et al.  The Effect of Interfacial Deformation on Electrodeposition Kinetics , 2004 .