Chapter 12 Ratio of pyramidal cells versus non-pyramidal cells in the human frontal isocortex and changes in ratio with ageing and Alzheimer's disease

Publisher Summary This chapter presents a study that assesses the percentages of both the pyramidal neurons and the non-pyramidal cells in various layers of a defined prefrontal isocortical area of the human adult and it has the ultimate goal of examining whether changes of these percentages occur with ageing and in Alzheimer's disease. The neuronal constituents of the mammalian telencephalic cortex can generally be classified as either pyramidal neurons or non-pyramidal neurons. In general, pyramidal cells and the modified forms of pyramidal cells can be considered as projection neurons, while most non-pyramidal cells can be referred to as local circuit neurons. Lipofuscin pigment granules can frequently be encountered in nerve cells of the human adult. The size, shape, stainability, and pattern of distribution of these granules can serve as characteristics for the differentiation of various neuronal types forming the human brain. Pigmented nerve cells show a slight increase in the number of lipofuscin granules with age, but this does not change the typical pattern of pigmentation. The pigmentation of pyramidal cells and modified pyramidal cells differs considerably from that seen in the nonpyramidal neurons. After the demonstration of the correspondence of the pigment characteristics and the nerve cell type as seen in the Golgi preparation, a combined pigment, Nissl, preparation allow to quantitatively analyze the proportions of the various types of cortical constituents at light microscopical level and enables to study their pattern of distribution throughout various cortical layers.

[1]  Sass Nl The age-dependent variation of the embedding-shrinkage of neurohistological sections. , 1982 .

[2]  L Einarson,et al.  A Method for Progressive Selective Staining of Nissl and Nuclear Substance in Nerve Cells. , 1932, The American journal of pathology.

[3]  T. Powell,et al.  Gap junctions between dendrites and somata of neurons in the primate sensori-motor cortex , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[4]  H. Haug Über die exakte Feststellung der Anzahl Nervenzellen pro Volumeneinheit des Cortex cerebri, zugleich ein Beispiel für die Durchführung genauer Zählungen , 1967 .

[5]  H. Braak,et al.  Age-related alterations of the proximal axon segment in lamina IIIab-pyramidal cells of the human isocortex. A Golgi and fine structural study. , 1980, Journal fur Hirnforschung.

[6]  C. Ribak,et al.  Ultrastructure of the pyramidal basket cells in the dentate gyrus of the rat , 1980, The Journal of comparative neurology.

[7]  T. Powell,et al.  A qualitative and quantitative electron microscopic study of the neurons in the primate motor and somatic sensory cortices. , 1979, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[8]  H Haug,et al.  The evaluation of cell-densities and of nerve-cell-size distribution by stereological procedures in a layered tissue (cortex cerebri). , 1979, Microscopica acta.

[9]  F. Sanides Die Architektonik des Menschlichen Stirnhirns , 1962 .

[10]  H. Wiśniewski,et al.  Alzheimer Neurofibrillary tangle: morphology and biochemistry. , 1982, Experimental brain research.

[11]  D. Mann ANNOTATION: NERVE CELL PROTEIN METABOLISM AND DEGENERATIVE DISEASE , 1982 .

[12]  R. Horobin,et al.  The chemical nature of the gallocyanin-chrome alum staining complex. , 1972, Stain technology.

[13]  H. Haug,et al.  The significance of morphometric procedures in the investigation of age changes in cytoarchitectonic structures of human brain. , 1984, Journal fur Hirnforschung.

[14]  C R Houser,et al.  Morphological diversity of immunocytochemically identified GABA neurons in the monkey sensory-motor cortex , 1983, Journal of neurocytology.

[15]  H. Braak,et al.  Isocortical Pathology in Type C Niemann‐Pick Disease: A Combined Golgi‐Pigmentoarchitectonic Study , 1983, Journal of neuropathology and experimental neurology.

[16]  N. Vijayashankar,et al.  Cell Loss with Aging , 1977 .

[17]  F. Gallyas,et al.  Silver staining of Alzheimer's neurofibrillary changes by means of physical development. , 1971, Acta morphologica Academiae Scientiarum Hungaricae.

[18]  E. Uemura,et al.  RNA content and volume of nerve cell bodies in human brain. I. Prefrontal cortex in aging normal and demented patients. , 1978, Journal of Neuropathology and Experimental Neurology.

[19]  A. Scheibel,et al.  Chapter 4 – The Methods of Golgi , 1978 .

[20]  J. O'leary,et al.  Structure of the area striata of the cat , 1941 .

[21]  L. Werner,et al.  Topographical distribution of neuronal types in the albino rat's area 17. A qualitative and quantitative Nissl study. , 1982, Zeitschrift fur mikroskopisch-anatomische Forschung.

[22]  D. Mann,et al.  The relationship between formation of senile plaques and neurofibrillary tangles and changes in nerve cell metabolism in Alzheimer type dementia , 1981, Mechanisms of Ageing and Development.

[23]  Eine weitere Verbesserung meiner Markscheidenfärbemethode am Gefrierschnitt , 1939 .

[24]  H. Braak,et al.  On the striate area of the human isocortex. A golgi‐ and pigmentarchitectonic study , 1976, The Journal of comparative neurology.

[25]  M. Colonnier Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. , 1968, Brain research.

[26]  M. Yamada,et al.  Verteilungsmuster der senilen Veränderungen in den Hirnstammkernen , 1977 .

[27]  H. Haug,et al.  The aging of cortical cytoarchitectonics in the light of stereological investigations. , 1981, Progress in clinical and biological research.

[28]  H. Wiśniewski,et al.  Neurofibrillary pathology: Current status and research perspectives , 1979, Mechanisms of Ageing and Development.

[29]  F. Vogel,et al.  The limbic system in Alzheimer's disease. A neuropathologic investigation. , 1976, The American journal of pathology.

[30]  Prof. Dr. Heiko Braak,et al.  Architectonics of the Human Telencephalic Cortex , 1980, Studies of Brain Function.

[31]  A. Peters,et al.  The neuronal composition of area 17 of rat visual cortex. I. The pyramidal cells , 1985, The Journal of comparative neurology.

[32]  H BRODY,et al.  Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex , 1955, The Journal of comparative neurology.

[33]  D. Neary,et al.  Alterations in protein synthetic capability of nerve cells in Alzheimer's disease. , 1981, Journal of neurology, neurosurgery, and psychiatry.

[34]  C. Curcio,et al.  Stability of neuron number in cortical barrels of aging mice , 1982, The Journal of comparative neurology.

[35]  M. Diamond,et al.  Plasticity of the aging cerebral cortex. , 1982, Experimental brain research.

[36]  T. Powell,et al.  An electron microscopic study of the types and proportions of neurons in the cortex of the motor and visual areas of the cat and rat. , 1980, Brain : a journal of neurology.

[37]  P. Yates,et al.  The relationship between lipofuscin pigment and ageing in the human nervous system , 1978, Journal of the Neurological Sciences.

[38]  T. Powell,et al.  An experimental electron microscopic study of afferent connections to the primate motor and somatic sensory cortices. , 1979, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[39]  T. Tömböl,et al.  An electron microscopic study of the neurons of the visual cortex , 1974, Journal of neurocytology.

[40]  Braitenberg,et al.  Cortical architectonics: General and areal , 1978 .

[41]  P. Timiras,et al.  A comparison of cell populations at various depth levels in cerebral cortex of young adult and aged Long-Evans rats. , 1968, Journal of gerontology.

[42]  D. Neary,et al.  NEUROFIBRILLARY PATHOLOGY AND PROTEIN SYNTHETIC CAPABILITY IN NERVE CELLS IN ALZHEIMER'S DISEASE , 1981, Neuropathology and applied neurobiology.

[43]  K. Voss,et al.  Age-related classification of pyramidal and stellate cells in the rat visual cortex: a Nissl study with the 'Morphoquant'. , 1981, Journal fur Hirnforschung.

[44]  E. M. Gilder,et al.  Handbuch der speziellen pathologischen Anatomie und Histologie , 1972 .

[45]  G. Clark,et al.  The gallocyanin-chrome alum stain; influence of methods of preparation on its activity and separation of active staining compound. , 1966, Stain technology.

[46]  D. Mann,et al.  THE QUANTITATIVE ASSESSMENT OF LIPOFUSCIN PIGMENT, CYTOPLASMIC RNA AND NUCLEOLAR VOLUME IN SENILE DEMENTIA , 1978, Neuropathology and applied neurobiology.

[47]  C. West A quantitative study of lipofuscin accumulation with age in normals and individuals with Down's syndrome, phenylketonuria, progeria and transneuronal atrophy , 1979, The Journal of comparative neurology.

[48]  H. Braak,et al.  Morphological studies of local circuit neurons in the cerebellar dentate nucleus of man. , 1983, Human neurobiology.

[49]  P. Yates,et al.  Lipoprotein pigments--their relationship to ageing in the human nervous system. I. The lipofuscin content of nerve cells. , 1974, Brain : a journal of neurology.

[50]  H. Haug,et al.  Preliminary report on macroscopic age changes in the human prosencephalon. A stereologic investigation. , 1984, Journal fur Hirnforschung.

[51]  E. Braak On the structure of IIIab-pyramidal cells in the human isocortex. A Golgi and electron microscopical study with special emphasis on the proximal axon segment. , 1980, Journal fur Hirnforschung.

[52]  E. Braak On the structure of the human striate area. , 1982, Advances in anatomy, embryology, and cell biology.

[53]  H. Braak,et al.  Neuronal types in the basolateral amygdaloid nuclei of man , 1983, Brain Research Bulletin.

[54]  J. Sloper An electron microscopic study of the neurons of the primate motor and somatic sensory cortices , 1973, Journal of neurocytology.

[55]  T. Hanley 'Neuronal fall-out' in the ageing brain: a critical review of the quantitative data. , 1974, Age and ageing.

[56]  J. E. Vaughn,et al.  Synaptic organization of immunocytochemically identified GABA neurons in the monkey sensory-motor cortex , 1983, Journal of neurocytology.

[57]  T. Powell,et al.  Selective degeneration of interneurons in the motor cortex of infant monkeys following controlled hypoxia: a possible cause of epilepsy , 1980, Brain Research.

[58]  P. Schwartzkroin,et al.  Morphology of identified interneurons in the CA1 regions of guinea pig hippocampus , 1985, The Journal of comparative neurology.

[59]  M. Roth,et al.  Observations on the brains of non-demented old people. , 1968, Journal of the neurological sciences.