Real-time sensing of bioaerosols: Review and current perspectives

Abstract Detection of bioaerosols, or primary biological aerosol particles (PBAPs), has become increasingly important for a wide variety of research communities and scientific questions. In particular, real-time (RT) techniques for autonomous, online detection and characterization of PBAP properties in both outdoor and indoor environments are becoming more commonplace and have opened avenues of research. With advances in technology, however, come challenges to standardize practices so that results are both reliable and comparable across technologies and users. Here, we present a critical review of major RT instrument classes that have been applied to PBAP research, especially with respect to environmental science, allergy monitoring, agriculture, public health, and national security. Eight major classes of RT techniques are covered, including the following: (i) fluorescence spectroscopy, (ii) elastic scattering, microscopy, and holography, (iii) Raman spectroscopy, (iv) mass spectrometry, (v) breakdown spectroscopy, (vi) remote sensing, (vii) microfluidic techniques, and (viii) paired aqueous techniques. For each class of technology we present technical limitations, misconceptions, and pitfalls, and also summarize best practices for operation, analysis, and reporting. The final section of the article presents pressing scientific questions and grand challenges for RT sensing of PBAP as well as recommendations for future work to encourage high-quality results and increased cross-community collaboration.

[1]  J. A. Huffman,et al.  Pollen clustering strategies using a newly developed single-particle fluorescence spectrometer , 2020 .

[2]  H. Mbareche,et al.  Field sampling of indoor bioaerosols , 2020, Aerosol science and technology : the journal of the American Association for Aerosol Research.

[3]  R. Jaenicke,et al.  Bioaerosol field measurements: Challenges and perspectives in outdoor studies , 2020, Aerosol Science and Technology.

[4]  B. Calpini,et al.  Real-time pollen monitoring using digital holography , 2019, Atmospheric Measurement Techniques.

[5]  Bernard Clot,et al.  Automatic pollen recognition with the Rapid-E particle counter: the first-level procedure, experience and next steps , 2019, Atmospheric Measurement Techniques.

[6]  David Y. H. Pui,et al.  Grand challenges for aerosol science and technology , 2019, Aerosol Science and Technology.

[7]  The Autonomous Pathogen Detection System , 2019, The Microflow Cytometer.

[8]  A. A. Grometstein Advertisement: MIT Lincoln Laboratory Technology in Support of National Security , 2019, 2019 IEEE Radar Conference (RadarConf).

[9]  U. Pöschl,et al.  Spectral Intensity Bioaerosol Sensor (SIBS): an instrument for spectrally resolved fluorescence detection of single particles in real time , 2019, Atmospheric Measurement Techniques.

[10]  P. Buseck,et al.  Model-measurement consistency and limits of bioaerosol abundance over the continental United States , 2019, Atmospheric Chemistry and Physics.

[11]  Characterisation and source identification of biofluorescent aerosol emissions over winter and summer periods in the United Kingdom , 2019, Atmospheric Chemistry and Physics.

[12]  Seung-Chan Hong,et al.  Development of an automated wet-cyclone system for rapid, continuous and enriched bioaerosol sampling and its application to real-time detection , 2018, Sensors and Actuators B: Chemical.

[13]  A. Zelenyuk,et al.  Activation of intact bacteria and bacterial fragments mixed with agar as cloud droplets and ice crystals in cloud chamber experiments , 2018, Atmospheric Chemistry and Physics.

[14]  Aydogan Ozcan,et al.  Label-Free Bioaerosol Sensing Using Mobile Microscopy and Deep Learning , 2018, ACS Photonics.

[15]  Sonia Garcia Alcega,et al.  A Controlled Study on the Characterisation of Bioaerosols Emissions from Compost , 2018, Atmosphere.

[16]  Yasunori Saito,et al.  Remote Detection of the Fluorescence Spectrum of Natural Pollens Floating in the Atmosphere Using a Laser-Induced-Fluorescence Spectrum (LIFS) Lidar , 2018, Remote. Sens..

[17]  J. A. Huffman,et al.  Evaluation of a hierarchical agglomerative clustering method applied to WIBS laboratory data for improved discrimination of biological particles by comparing data preparation techniques , 2018, Atmospheric Measurement Techniques.

[18]  J. A. Huffman,et al.  Characterization of steady-state fluorescence properties of polystyrene latex spheres using off- and online spectroscopic methods , 2018, Atmospheric Measurement Techniques.

[19]  Andrew P. Morse,et al.  Machine learning for improved data analysis of biological aerosol using the WIBS , 2018, Atmospheric Measurement Techniques.

[20]  S. Hering,et al.  Collection of airborne bacteria and yeast through water-based condensational growth , 2018, Aerobiologia.

[21]  J. Jimenez,et al.  Evaluation of the new capture vaporizer for aerosol mass spectrometers: Characterization of organic aerosol mass spectra , 2018 .

[22]  K. Bergmann,et al.  Pollen and spore monitoring in the world , 2018, Clinical and Translational Allergy.

[23]  Aydogan Ozcan,et al.  Mobile Technologies for the Discovery, Analysis, and Engineering of the Global Microbiome. , 2018, ACS nano.

[24]  J. Jimenez,et al.  Evaluation of the New Capture Vaporizer for Aerosol Mass Spectrometers (AMS): Elemental Composition and Source Apportionment of Organic Aerosols (OA) , 2018 .

[25]  Benjamin E Swanson,et al.  Development and characterization of an inexpensive single-particle fluorescence spectrometer for bioaerosol monitoring. , 2018, Optics express.

[26]  A. Hansell,et al.  A systematic review of the public health risks of bioaerosols from intensive farming. , 2017, International journal of hygiene and environmental health.

[27]  M. Fennelly,et al.  Review: The Use of Real-Time Fluorescence Instrumentation to Monitor Ambient Primary Biological Aerosol Particles (PBAP) , 2017 .

[28]  Differential Raman backscattering cross sections of black carbon nanoparticles , 2017, Scientific Reports.

[29]  W. Stanley,et al.  Real-time detection of airborne fluorescent bioparticles in Antarctica , 2017 .

[30]  J. Lelieveld,et al.  Aerosol Health Effects from Molecular to Global Scales. , 2017, Environmental science & technology.

[31]  G. Mainelis,et al.  Systematic characterization and fluorescence threshold strategies for the wideband integrated bioaerosol sensor (WIBS) using size-resolved biological and interfering particles , 2017 .

[32]  T. Leisner,et al.  Laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF): performance, reference spectra and classification of atmospheric samples , 2017 .

[33]  V. Sivaprakasam,et al.  Surface Enhanced Raman Spectroscopy of Individual Suspended Aerosol Particles , 2017 .

[34]  J. A. Huffman,et al.  Online Techniques for Quantification and Characterization of Biological Aerosols , 2017 .

[35]  K. Prather,et al.  Expanding Single Particle Mass Spectrometer Analyses for the Identification of Microbe Signatures in Sea Spray Aerosol. , 2017, Analytical chemistry.

[36]  F. H. Dominski,et al.  Sources and dynamics of fluorescent particles in hospitals , 2017, Indoor air.

[37]  J. Vasilescu,et al.  Contribution of bacteria-like particles to PM 2.5 aerosol in urban and rural environments , 2017 .

[38]  A. Ault,et al.  Computer-controlled Raman microspectroscopy (CC-Raman): A method for the rapid characterization of individual atmospheric aerosol particles , 2017 .

[39]  Yuanjin Zhao,et al.  Emerging Droplet Microfluidics. , 2017, Chemical reviews.

[40]  Jae Hee Jung,et al.  Highly Enriched, Controllable, Continuous Aerosol Sampling Using Inertial Microfluidics and Its Application to Real-Time Detection of Airborne Bacteria. , 2017, ACS sensors.

[41]  Zachary S. Ballard,et al.  Air quality monitoring using mobile microscopy and machine learning , 2017, Light: Science & Applications.

[42]  Michel Thibaudon,et al.  Automated pollen monitoring system using laser optics for observing seasonal changes in the concentration of total airborne pollen , 2017, Aerobiologia.

[43]  S. C. Hill,et al.  Automated aerosol Raman spectrometer for semi-continuous sampling of atmospheric aerosol , 2017 .

[44]  Derek Tseng,et al.  Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy , 2017, Nature Communications.

[45]  B. Damit Droplet-based microfluidics detector for bioaerosol detection , 2017 .

[46]  G. Mainelis,et al.  Systematic characterization and fluorescence threshold strategies for the wideband integrated bioaerosol sensor ( WIBS ) using size-resolved biological and interfering particles , 2017 .

[47]  M. Andreae,et al.  Bioaerosols in the Earth system: Climate, health, and ecosystem interactions , 2016 .

[48]  K. Froyd,et al.  Improved identification of primary biological aerosol particles using single-particle mass spectrometry , 2016 .

[49]  U. Pöschl,et al.  Fluorescent bioaerosol particle, molecular tracer, and fungal spore concentrations during dry and rainy periods in a semi-arid forest , 2016 .

[50]  D. Fahey,et al.  Fluorescence calibration method for single-particle aerosol fluorescence instruments , 2016 .

[51]  G. D'Amato,et al.  Climate change, air pollution, and allergic respiratory diseases: an update , 2016, Current opinion in allergy and clinical immunology.

[52]  Benoît Crouzy,et al.  All-optical automatic pollen identification: Towards an operational system , 2016 .

[53]  D. Huffman,et al.  A wavelength-dispersive instrument for characterizing fluorescence andscattering spectra of individual aerosol particles on a substrate , 2016 .

[54]  U. Pöschl,et al.  Fluorescent biological aerosol particle measurements at a tropicalhigh-altitude site in southern India during the southwestmonsoon season , 2016 .

[55]  Mark Hernandez,et al.  Chamber catalogues of optical and fluorescent signatures distinguishbioaerosol classes , 2016 .

[56]  Warren Stanley,et al.  Evaluation of Machine Learning Algorithms for Classification of Primary Biological Aerosol using a new UV-LIF spectrometer , 2016 .

[57]  J. Schneider,et al.  Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment , 2016 .

[58]  Mark J. Schwab,et al.  Raman scattering and red fluorescence in the photochemical transformation of dry tryptophan particles. , 2016, Optics express.

[59]  Kenneth A. Smith,et al.  Development of an aerosol mass spectrometer lens system for PM2.5 , 2016 .

[60]  S. Gligorovski,et al.  The performance and the characterization of laser ablation aerosol particle time-of-flight mass spectrometry (LAAP-ToF-MS) , 2016 .

[61]  M. C. Tracey,et al.  A prototype personal aerosol sampler based on electrostatic precipitation and electrowetting-on-dielectric actuation of droplets , 2016 .

[62]  M. Yao,et al.  Ambient bioaerosol particle dynamics observed during haze and sunny days in Beijing. , 2016, The Science of the total environment.

[63]  W W Nazaroff,et al.  Chamber bioaerosol study: human emissions of size-resolved fluorescent biological aerosol particles. , 2016, Indoor air.

[64]  A. Alcamí,et al.  Monitoring of airborne biological particles in outdoor atmosphere. Part 1: Importance, variability and ratios. , 2016, International microbiology : the official journal of the Spanish Society for Microbiology.

[65]  S. Hering,et al.  Efficient collection of viable virus aerosol through laminar‐flow, water‐based condensational particle growth , 2016, Journal of applied microbiology.

[66]  S. Saari,et al.  Identification of single microbial particles using electro-dynamic balance assisted laser-induced breakdown and fluorescence spectroscopy , 2016 .

[67]  R. A. Motes Transmission Efficiency , 2016, Free-Space Laser Communication: An Introduction.

[68]  Robert T. Downs,et al.  The power of databases: The RRUFF project , 2016 .

[69]  S. Saari,et al.  Effects of fungal species, cultivation time, growth substrate, and air exposure velocity on the fluorescence properties of airborne fungal spores. , 2015, Indoor air.

[70]  D. Topping,et al.  Evaluation of hierarchical agglomerative cluster analysis methods for discrimination of primary biological aerosol , 2015 .

[71]  P. Kaye,et al.  Observations of fluorescent aerosol–cloud interactions in the free troposphere at the High-Altitude Research Station Jungfraujoch , 2015 .

[72]  Ulrich Heimann,et al.  Automatic and Online Pollen Monitoring , 2015, International Archives of Allergy and Immunology.

[73]  A. Ault,et al.  Surface Enhanced Raman Spectroscopy Enables Observations of Previously Undetectable Secondary Organic Aerosol Components at the Individual Particle Level. , 2015, Analytical chemistry.

[74]  B. Morrical,et al.  The on-line analysis of aerosol-delivered pharmaceuticals via single particle aerosol mass spectrometry. , 2015, International journal of pharmaceutics.

[75]  R. Vautard,et al.  Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe , 2015 .

[76]  S. C. Hill,et al.  Size-dependent fluorescence of bioaerosols: Mathematical model using fluorescing and absorbing molecules in bacteria , 2015 .

[77]  U. Pöschl,et al.  Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene. , 2015, Chemical reviews.

[78]  P. Amato,et al.  Characterization of ice-nucleating bacteria using on-line electron impact ionization aerosol mass spectrometry. , 2015, Journal of mass spectrometry : JMS.

[79]  Yong-Le Pan,et al.  Photophoretic trapping-Raman spectroscopy for single pollens and fungal spores trapped in air , 2015 .

[80]  Mark Hernandez,et al.  Airborne observations of regional variation in fluorescent aerosol across the United States , 2015 .

[81]  Kei Tsuruzoe,et al.  Micro Sensors for Real-time Monitoring of Mold Spores and Pollen , 2015, BIODEVICES.

[82]  K. Mueller,et al.  Airborne Single Particle Mass Spectrometers (SPLAT II & miniSPLAT) and New Software for Data Visualization and Analysis in a Geo-Spatial Context , 2015, Journal of The American Society for Mass Spectrometry.

[83]  Derek K. Tseng,et al.  Imaging and sizing of single DNA molecules on a mobile phone. , 2014, ACS nano.

[84]  Daniel A. Pickersgill,et al.  Diversity and seasonal dynamics of airborne archaea , 2014 .

[85]  Markus D. Petters,et al.  High Relative Humidity as a Trigger for Widespread Release of Ice Nuclei , 2014 .

[86]  Ulrich Pöschl,et al.  Ambient Measurements of Biological Aerosol Particles Near Killarney, Ireland: a Comparison Between Real-time Fluorescence and Microscopy Techniques , 2014 .

[87]  K. Holt,et al.  Principles and methods for automated palynology. , 2014, The New phytologist.

[88]  Design and Performance of a Low-Cost Micro-Channel Aerosol Collector , 2014 .

[89]  G. Mulholland,et al.  On the Feasibility of a Number Concentration Calibration Using a Wafer Surface Scanner , 2014 .

[90]  S. Hering,et al.  Design and Laboratory Evaluation of a Sequential Spot Sampler for Time-Resolved Measurement of Airborne Particle Composition , 2014, Aerosol science and technology : the journal of the American Association for Aerosol Research.

[91]  Yong-Le Pan,et al.  Spectrally-resolved fluorescence cross sections of aerosolized biological live agents and simulants using five excitation wavelengths in a BSL-3 laboratory. , 2014, Optics express.

[92]  C. Galán,et al.  Pollen monitoring: minimum requirements and reproducibility of analysis , 2014, Aerobiologia.

[93]  J. Sodeau,et al.  Using spectral analysis and fluorescence lifetimes to discriminate between grass and tree pollen for aerobiological applications , 2014 .

[94]  Jungho Hwang,et al.  Real-time monitoring of bioaerosols via cell-lysis by air ion and ATP bioluminescence detection. , 2014, Biosensors & bioelectronics.

[95]  H Ribeiro,et al.  Pollen Raman spectra database: application to the identification of airborne pollen. , 2014, Talanta.

[96]  U. Pöschl,et al.  Bioprecipitation: a feedback cycle linking Earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere , 2014, Global change biology.

[97]  Yong-le Pan,et al.  Fluorescence of bioaerosols: Mathematical model including primary fluorescing and absorbing molecules in bacteria: Errata (Optics Express (2013) 20, 19 (22285-22313)) , 2014 .

[98]  Mark A. Coleman,et al.  Effects of ozone and relative humidity on fluorescence spectra of octapeptide bioaerosol particles , 2014 .

[99]  Nathalie Tufenkji,et al.  Real-time monitoring of airborne cat allergen using a QCM-based immunosensor , 2014 .

[100]  A. Bartko,et al.  Raman spectroscopy for biological identification , 2014 .

[101]  Akanksha Eknath Pachpinde,et al.  REAL TIME MONITORING OF , 2014 .

[102]  T. Petäjä,et al.  Seasonal cycles of fluorescent biological aerosol particles in boreal and semi-arid forests of Finland and Colorado , 2013 .

[103]  U. Pöschl,et al.  Autofluorescence of atmospheric bioaerosols: spectral fingerprints and taxonomic trends of pollen , 2013 .

[104]  Yong-Le Pan,et al.  Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria. , 2013, Optics express.

[105]  Aydogan Ozcan,et al.  Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array. , 2013, Lab on a chip.

[106]  C. Braban,et al.  Sub-Antarctic marine aerosol: dominant contributions from biogenic sources , 2013 .

[107]  P. Kaye,et al.  Observations of fluorescent and biological aerosol at a high-altitude site in central France , 2013 .

[108]  A. Maini,et al.  Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[109]  A. Bertram,et al.  High concentrations of biological aerosol particles , 2013 .

[110]  Patrick Minnis,et al.  Dust and Biological Aerosols from the Sahara and Asia Influence Precipitation in the Western U.S. , 2013, Science.

[111]  J. Santarpia,et al.  Relationship Between Biologically Fluorescent Aerosol and Local Meteorological Conditions , 2013 .

[112]  Luigi Bonacina,et al.  A flash-lamp based device for fluorescence detection and identification of individual pollen grains. , 2013, The Review of scientific instruments.

[113]  Ulrich Pöschl,et al.  Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08 , 2012 .

[114]  J. Sodeau,et al.  A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material , 2012 .

[115]  Yong-Le Pan,et al.  Clustered and integrated fluorescence spectra from single atmospheric aerosol particles excited by a 263- and 351-nm laser at New Haven, CT, and Adelphi, MD , 2012 .

[116]  P. Kaye,et al.  Cluster analysis of WIBS single-particle bioaerosol data , 2012 .

[117]  Jiamo Fu,et al.  Enhanced trimethylamine-containing particles during fog events detected by single particle aerosol mass spectrometry in urban Guangzhou, China , 2012 .

[118]  E. Toprak,et al.  Fluorescent biological aerosol particles measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with a one year field study , 2012 .

[119]  R. Jaenicke,et al.  Primary biological aerosol particles in the atmosphere: a review , 2012 .

[120]  Luigi Bonacina,et al.  Individual bioaerosol particle discrimination by multi-photon excited fluorescence. , 2011, Optics express.

[121]  J. Jimenez,et al.  Mass-spectrometric identification of primary biological particle markers and application to pristine submicron aerosol measurements in Amazonia , 2011 .

[122]  D. Caruana Detection and analysis of airborne particles of biological origin: present and future. , 2011, The Analyst.

[123]  U. Pöschl,et al.  Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences , 2011 .

[124]  T. Painter,et al.  Atmospheric bioaerosols transported via dust storms in the western United States , 2011 .

[125]  B. Auvermann,et al.  High concentrations of coarse particles emitted from a cattle feeding operation , 2011 .

[126]  P. Kaye,et al.  Atmospheric Chemistry and Physics the Fluorescence Properties of Aerosol Larger than 0.8 Μm in Urban and Tropical Rainforest Locations , 2022 .

[127]  Zhenqiang Xu,et al.  Bioaerosol Science, Technology, and Engineering: Past, Present, and Future , 2011 .

[128]  P. Cheng,et al.  Real time bipolar time-of-flight mass spectrometer for analyzing single aerosol particles , 2011 .

[129]  Vasanthi Sivaprakasam,et al.  Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements. , 2011, Optics express.

[130]  David G. Schmale,et al.  Tracking the potato late blight pathogen in the atmosphere using unmanned aerial vehicles and Lagrangian modeling , 2011 .

[131]  C. Voigt,et al.  Characterization of a Newly Developed Aircraft-Based Laser Ablation Aerosol Mass Spectrometer (ALABAMA) and First Field Deployment in Urban Pollution Plumes over Paris During MEGAPOLI 2009 , 2011 .

[132]  Audrey M. Williams,et al.  Single-particle aerosol mass spectrometry (SPAMS) for high-throughput and rapid analysis of biological aerosols and single cells , 2011 .

[133]  C. Colliex,et al.  Mixing state of aerosols and direct observation of carbonaceous and marine coatings on African dust by individual particle analysis , 2010 .

[134]  B. Bohannan,et al.  Biodiversity and biogeography of the atmosphere , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[135]  U. Pöschl,et al.  Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon , 2010, Science.

[136]  Yong-Le Pan,et al.  Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: comparison of classification schemes employing different emission and scattering results. , 2010, Optics express.

[137]  P. Kaye,et al.  Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual channel fluorescence spectrometer , 2010 .

[138]  Morgan S. Schmidt,et al.  Preliminary correlations of feature strength in spark-induced breakdown spectroscopy of bioaerosols with concentrations measured in laboratory analyses , 2010 .

[139]  G. Mainelis,et al.  Performance of an Electrostatic Precipitator with Superhydrophobic Surface when Collecting Airborne Bacteria , 2010 .

[140]  Laser Based Stand-Off Detection of Biological Agents ( Détection à distance des agents biologiques à l ’ aide du laser ) , 2010 .

[141]  M. Brydegaard,et al.  Insect monitoring with fluorescence lidar techniques: feasibility study. , 2009, Applied optics.

[142]  Richard DeFreez LIF bio-aerosol threat triggers: then and now , 2009, Security + Defence.

[143]  U. Pöschl,et al.  Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe , 2009 .

[144]  Peter Ertl,et al.  Microfluidic Systems for Pathogen Sensing: A Review , 2009, Sensors.

[145]  Paul J. DeMott,et al.  In situ detection of biological particles in cloud ice-crystals , 2009 .

[146]  D. Fennell,et al.  Application of ATP bioluminescence method to characterize performance of bioaerosol sampling devices , 2009 .

[147]  S. C. Hill,et al.  Fluorescence of Bacteria, Pollens, and Naturally Occurring Airborne Particles: Excitation/Emission Spectra , 2009 .

[148]  K. Prather,et al.  Development and characterization of an aircraft aerosol time-of-flight mass spectrometer. , 2009, Analytical chemistry.

[149]  J. E. Tucker,et al.  Classification and selective collection of individual aerosol particles using laser-induced fluorescence. , 2008, Applied optics.

[150]  S. C. Hill,et al.  Real-time measurement of dual-wavelength laser-induced fluorescence spectra of individual aerosol particles. , 2008, Optics express.

[151]  David Sickenberger,et al.  Overview of the TAC-BIO detector , 2008, Security + Defence.

[152]  Benjamin J Hindson,et al.  Environmental monitoring for biological threat agents using the autonomous pathogen detection system with multiplexed polymerase chain reaction. , 2008, Analytical chemistry.

[153]  Kenneth Sassen,et al.  Boreal tree pollen sensed by polarization lidar: Depolarizing biogenic chaff , 2008 .

[154]  L. Morawska,et al.  Deposition rates of fungal spores in indoor environments, factors effecting them and comparison with non-biological aerosols , 2008 .

[155]  B. Vogel,et al.  Numerical simulation of birch pollen dispersion with an operational weather forecast system , 2008, International journal of biometeorology.

[156]  R. Górny,et al.  Microbial Air Contamination in Farmhouses – Quantitative Aspects , 2008 .

[157]  Warren Stanley,et al.  Low-cost real-time multiparameter bio-aerosol sensors , 2008, Security + Defence.

[158]  P. Ariya,et al.  Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles , 2008 .

[159]  Jonathan M. Richardson,et al.  Polarimetric lidar signatures for remote detection of biological warfare agents , 2008, SPIE Defense + Commercial Sensing.

[160]  John E. McFee,et al.  Bioaerosol Standoff Monitoring Using Intensified Range-Gated Laser-Induced Fluorescence Spectroscopy , 2008 .

[161]  Yong-Le Pan,et al.  Single‐particle laser‐induced‐fluorescence spectra of biological and other organic‐carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico , 2007 .

[162]  Bernard Clot,et al.  An algorithm and a device for counting airborne pollen automatically using laser optics , 2007 .

[163]  P. Vandenabeele,et al.  Reference database of Raman spectra of biological molecules , 2007 .

[164]  S. Bonini,et al.  Allergenic pollen and pollen allergy in Europe , 2007, Allergy.

[165]  M. Ammor Recent Advances in the Use of Intrinsic Fluorescence for Bacterial Identification and Characterization , 2007, Journal of Fluorescence.

[166]  Kenneth A. Smith,et al.  Transmission Efficiency of an Aerodynamic Focusing Lens System: Comparison of Model Calculations and Laboratory Measurements for the Aerodyne Aerosol Mass Spectrometer , 2007 .

[167]  Measurement of aerosol-particle trajectories using a structured laser beam. , 2007, Applied optics.

[168]  R. Niessner,et al.  Raman microspectroscopic analysis of changes in the chemical structure and reactivity of soot in a diesel exhaust aftertreatment model system. , 2007, Environmental science & technology.

[169]  D. Murphy,et al.  The design of single particle laser mass spectrometers. , 2007, Mass spectrometry reviews.

[170]  C E Kolb,et al.  Guest Editor: Albert Viggiano CHEMICAL AND MICROPHYSICAL CHARACTERIZATION OF AMBIENT AEROSOLS WITH THE AERODYNE AEROSOL MASS SPECTROMETER , 2022 .

[171]  P. Kaye,et al.  ANGULARLY RESOLVED ELASTIC SCATTERING FROM AIRBORNE PARTICLES , 2007 .

[172]  Chihshan Li,et al.  Real-time monitoring for bioaerosols--flow cytometry. , 2007, The Analyst.

[173]  Richard N. Czerwinski,et al.  Advanced Trigger Development , 2007 .

[174]  S. Berry,et al.  Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection. , 2006, Applied optics.

[175]  D. Murphy,et al.  Particle analysis by laser mass spectrometry (PALMS) studies of ice nuclei and other low number density particles , 2006 .

[176]  Katrin Fuhrer,et al.  Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. , 2006, Analytical chemistry.

[177]  Z. Mierczyk,et al.  Fluorescence excitation-emission matrices of selected biological materials , 2006, SPIE Security + Defence.

[178]  R. Flagan,et al.  Meteorological Influences on Respirable Fragment Release from Chinese Elm Pollen , 2006 .

[179]  Bruce W. Woods,et al.  Characterization of ambient aerosols at the San Francisco International Airport using bioaerosol mass spectrometry , 2006, SPIE Defense + Commercial Sensing.

[180]  M. Sofiev,et al.  Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study , 2006, International journal of biometeorology.

[181]  Jürgen Popp,et al.  On-line monitoring and identification of bioaerosols. , 2006, Analytical chemistry.

[182]  G. Whitesides,et al.  Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. , 2006, Lab on a chip.

[183]  Yoon-Kyu Song,et al.  290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles. , 2005, Optics express.

[184]  D. Lim,et al.  Current and Developing Technologies for Monitoring Agents of Bioterrorism and Biowarfare , 2005, Clinical Microbiology Reviews.

[185]  M. Frank,et al.  Bioaerosol Mass Spectrometry for Rapid Detection of Individual Airborne Mycobacterium tuberculosis H37Ra Particles , 2005, Applied and Environmental Microbiology.

[186]  Krzysztof Kopczynski,et al.  Laser induced fluorescence system for detection of biological agents: European project FABIOLA , 2005, SPIE Optics + Optoelectronics.

[187]  Rocco Casagrande,et al.  Detection of Biological Agents , 2005 .

[188]  Stephan Borrmann,et al.  A New Time-of-Flight Aerosol Mass Spectrometer (TOF-AMS)—Instrument Description and First Field Deployment , 2005 .

[189]  Alla Zelenyuk,et al.  Single Particle Laser Ablation Time-of-Flight Mass Spectrometer: An Introduction to SPLAT , 2005 .

[190]  Steven D. Campbell,et al.  Wavelength comparison study for bioaerosol detection , 2005, SPIE Defense + Commercial Sensing.

[191]  E Hirst,et al.  Single particle multichannel bio-aerosol fluorescence sensor. , 2005, Optics express.

[192]  Patrick J. Gardner,et al.  Biological agent warning sensor (BAWS): laser-induced fluorescence as the joint biological point detection system trigger , 2005, SPIE Defense + Commercial Sensing.

[193]  H. Kipen,et al.  Bioaerosols and sick building syndrome: particles, inflammation, and allergy , 2005, Current opinion in allergy and clinical immunology.

[194]  M. Frank,et al.  Stable isotope labeling of entire Bacillus atrophaeus spores and vegetative cells using bioaerosol mass spectrometry. , 2005, Analytical chemistry.

[195]  R. Niessner,et al.  Protein nitration by polluted air. , 2005, Environmental science & technology.

[196]  R. Niessner,et al.  Characterization and discrimination of pollen by Raman microscopy , 2005, Analytical and bioanalytical chemistry.

[197]  P. Beggs Impacts of climate change on aeroallergens: past and future , 2004, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.

[198]  Vasanthi Sivaprakasam,et al.  Multiple UV wavelength excitation and fluorescence of bioaerosols , 2004, SPIE Optics East.

[199]  Yong-Le Pan,et al.  A Puff of Air Sorts Bioaerosols for Pathogen Identification , 2004 .

[200]  M. Frank,et al.  Toward understanding the ionization of biomarkers from micrometer particles by bio-aerosol mass spectrometry , 2004, Journal of the American Society for Mass Spectrometry.

[201]  Yong-Le Pan,et al.  Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA: measurement and classification of single particles containing organic carbon , 2004 .

[202]  L. Morawska,et al.  Performance Evaluation of the UVAPS in Measuring Biological Aerosols: Fluorescence Spectra from NAD(P)H Coenzymes and Riboflavin , 2004 .

[203]  Matthias Frank,et al.  Reagentless detection and classification of individual bioaerosol particles in seconds. , 2004, Analytical chemistry.

[204]  P. Taylor,et al.  Thunderstorm asthma , 2004, Current allergy and asthma reports.

[205]  Zoran Ristovski,et al.  Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress , 2003 .

[206]  Yong-Le Pan,et al.  Application of light-emitting diodes for aerosol fluorescence detection. , 2003, Optics letters.

[207]  Yong-Le Pan,et al.  Single-Particle Fluorescence Spectrometer for Ambient Aerosols , 2003 .

[208]  S. Wright,et al.  Biodiversity Meets the Atmosphere: A Global View of Forest Canopies , 2003, Science.

[209]  J. Douwes,et al.  Bioaerosol health effects and exposure assessment: progress and prospects. , 2003, The Annals of occupational hygiene.

[210]  Zoran Ristovski,et al.  Real-time measurement of bacterial aerosols with the UVAPS: performance evaluation , 2003 .

[211]  Jim Ho,et al.  Future of biological aerosol detection , 2002 .

[212]  Graham D. Marshall,et al.  APDS: Autonomous Pathogen Detection System , 2002 .

[213]  B V Bronk,et al.  Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity. , 2001, Applied optics.

[214]  Yong-Le Pan,et al.  High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector , 2001 .

[215]  G Hoevenaars,et al.  REAL-TIME ANALYSIS , 2001 .

[216]  E Hirst,et al.  Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles. , 2000, Applied optics.

[217]  David S. Thomson,et al.  Particle Analysis by Laser Mass Spectrometry WB-57F Instrument Overview , 2000 .

[218]  Kenneth A. Smith,et al.  Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles , 2000 .

[219]  P. Hairston,et al.  Differences in Detected Fluorescence Among Several Bacterial Species Measured with a Direct-Reading Particle Sizer and Fluorescence Detector , 2000 .

[220]  Nathan R. Newbury,et al.  Detection of Biological Agents , 2000 .

[221]  Meng-Dawn Cheng,et al.  Aerosol Measurement by Laser-Induced Plasma Technique: A Review , 1999 .

[222]  Mark Seaver,et al.  Size and Fluorescence Measurements for Field Detection of Biological Aerosols , 1999 .

[223]  S. C. Hill,et al.  Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser. , 1999, Optics letters.

[224]  Yong-Le Pan,et al.  Real-time measurement of fluorescence spectra from single airborne biological particles , 1999 .

[225]  Mark Seaver,et al.  Continuous, rapid biological aerosol detection with the use of UV fluorescence: Outdoor test results , 1999 .

[226]  J. Ho,et al.  Measurement of biological aerosol with a fluorescent aerodynamic particle sizer (FLAPS): correlation of optical data with biological data , 1999 .

[227]  G. Schweiger,et al.  Dispersive raman spectroscopy on soot particles , 1998 .

[228]  W. Mccrone Particle Analysis , 1998, Microscopy Today.

[229]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[230]  B. Morrical,et al.  Real-Time Analysis of Individual Atmospheric Aerosol Particles: Design and Performance of a Portable ATOFMS , 1997 .

[231]  R. Colwell,et al.  Effect of aerosolization on culturability and viability of gram-negative bacteria , 1997, Applied and environmental microbiology.

[232]  W. Whitten,et al.  Real-time detection of individual airborne bacteria , 1997 .

[233]  K. Nakamoto,et al.  The handbook of infrared and Raman spectra of inorganic compounds and organic salts , 1997 .

[234]  J. Ho,et al.  Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence. , 1997, Journal of aerosol science.

[235]  John Bartlett Bioaerosols Handbook , 1996 .

[236]  P. Sopp Cluster analysis. , 1996, Veterinary immunology and immunopathology.

[237]  John G. Bruno,et al.  Fluorescence Particle Counter for Detecting Airborne Bacteria and Other Biological Particles , 1995 .

[238]  K. Spurny On the chemical detection of bioaerosols , 1994 .

[239]  W. D. Griffiths,et al.  The assessment of bioaerosols: A critical review , 1994 .

[240]  Anna Wong,et al.  Ultraviolet fluorescence lidar detection of bioaerosols , 1994, Defense, Security, and Sensing.

[241]  H. Burger Bioaerosols: prevalence and health effects in the indoor environment. , 1990 .

[242]  H. Burge Bioaerosols: prevalence and health effects in the indoor environment. , 1990, The Journal of allergy and clinical immunology.

[243]  Wolfgang Kiefer,et al.  Raman-Microsampling Technique Applying Optical Levitation by Radiation Pressure , 1984 .

[244]  Liefei Xu April THE PROTOTYPE , 1982, The Lancet.

[245]  G. J. Rosasco,et al.  Raman Microprobe Characterization of Residual Carbonaceous Material Associated with Urban Airborne Particulates , 1978 .

[246]  T. Novakov,et al.  Raman scattering and the characterisation of atmospheric aerosol particles , 1977, Nature.

[247]  Edgar S. Etz,et al.  The Analysis of Discrete Fine Particles by Raman Spectroscopy , 1975 .

[248]  M Birnbaum,et al.  Fluorescence of atmospheric aerosols and lidar implications. , 1973, Applied optics.

[249]  R. F. Brown,et al.  PERFORMANCE EVALUATION , 2019, ISO 22301:2019 and business continuity management – Understand how to plan, implement and enhance a business continuity management system (BCMS).

[250]  R. Settipane,et al.  Allergic rhinitis , 2005, Rhinology and Anterior Skull Base Surgery.

[251]  Hans-Jürgen Beug,et al.  Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete , 1961 .

[252]  J. M. Hirst AN AUTOMATIC VOLUMETRIC SPORE TRAP , 1952 .

[253]  P. H. Gregory,et al.  Microbiology of the Atmosphere , 1962, Nature.

[254]  Thos. Carnelley,et al.  The Carbonic Acid, Organic Matter, and Micro-Organisms in Air, More Especially of Dwellings and Schools , 1887 .