Axon Sorting in the Optic Tract Requires HSPG Synthesis by ext2 (dackel) and extl3 (boxer)

[1]  T J Horder,et al.  Selection of appropriate medial branch of the optic tract by fibres of ventral retinal origin during development and in regeneration: an autoradiographic study in Xenopus. , 1979, Journal of embryology and experimental morphology.

[2]  J. Scholes Nerve fibre topography in the retinal projection to the tectum , 1979, Nature.

[3]  Hajime Fujisawa,et al.  Retinotopic analysis of fiber pathways in the regenerating retinotectal system of the adult newt cynops pyrrhogaster , 1981, Brain Research.

[4]  C A Stuermer,et al.  Retinotopic organization of the developing retinotectal projection in the zebrafish embryo , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  S B Udin,et al.  Formation of topographic maps. , 1988, Annual review of neuroscience.

[6]  X. Bai,et al.  Developmental changes in heparan sulfate expression: in situ detection with mAbs , 1992, The Journal of cell biology.

[7]  W. Halfter A heparan sulfate proteoglycan in developing avian axonal tracts , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  S. Chan,et al.  Changes in fiber order in the optic nerve and tract of rat embryos , 1994, The Journal of comparative neurology.

[9]  H. Okamoto,et al.  Developmental regulation of Islet‐1 mRNA expression during neuronal differentiation in embryonic zebrafish , 1994, Developmental dynamics : an official publication of the American Association of Anatomists.

[10]  I. Lax,et al.  Regulation of growth factor activation by proteoglycans: What is the role of the low affinity receptors? , 1995, Cell.

[11]  C. Holt,et al.  FGF signaling and target recognition in the developing xenopus visual system , 1995, Neuron.

[12]  A. Oohira [Proteoglycans in the developing brain]. , 1995, Nihon shinkei seishin yakurigaku zasshi = Japanese journal of psychopharmacology.

[13]  Elsa Cornel,et al.  Absence of topography in precociously innervated tecta. , 1995, Development.

[14]  H. Baier,et al.  Zebrafish mutations affecting retinotectal axon pathfinding. , 1996, Development.

[15]  C. Nüsslein-Volhard,et al.  Genetic analysis of fin formation in the zebrafish, Danio rerio. , 1996, Development.

[16]  H. Baier,et al.  Mutations disrupting the ordering and topographic mapping of axons in the retinotectal projection of the zebrafish, Danio rerio. , 1996, Development.

[17]  H. Baier,et al.  Genetic dissection of the retinotectal projection. , 1996, Development.

[18]  D A Kane,et al.  Jaw and branchial arch mutants in zebrafish I: branchial arches. , 1996, Development.

[19]  C. Holt,et al.  Inhibition of FGF Receptor Activity in Retinal Ganglion Cell Axons Causes Errors in Target Recognition , 1996, Neuron.

[20]  C. Holt,et al.  Essential role of heparan sulfates in axon navigation and targeting in the developing visual system. , 1997, Development.

[21]  S. Schulte-Merker,et al.  The development of the paired fins in the Zebrafish (Danio rerio) , 1998, Mechanisms of Development.

[22]  S. Jhaveri,et al.  Patterns of Chondroitin Sulfate Immunoreactivity in the Developing Tectum Reflect Regional Differences in Glycosaminoglycan Biosynthesis , 1998, The Journal of Neuroscience.

[23]  C. McCormick,et al.  The Putative Tumor Suppressors EXT1 and EXT2 Are Glycosyltransferases Required for the Biosynthesis of Heparan Sulfate* , 1998, The Journal of Biological Chemistry.

[24]  N. Perrimon,et al.  Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion , 1998, Nature.

[25]  P. Ingham,et al.  Characterisation of a second patched gene in the zebrafish Danio rerio and the differential response of patched genes to Hedgehog signalling. , 1999, Developmental biology.

[26]  J. Clarke,et al.  Requirement for the zebrafish mid-hindbrain boundary in midbrain polarisation, mapping and confinement of the retinotectal projection. , 1999, Development.

[27]  N. Perrimon,et al.  Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan. , 1999, Molecular cell.

[28]  W. Talbot,et al.  Positional cloning of mutated zebrafish genes. , 1999, Methods in cell biology.

[29]  S. Carr,et al.  Mammalian Homologues of the Drosophila Slit Protein Are Ligands of the Heparan Sulfate Proteoglycan Glypican-1 in Brain* , 1999, The Journal of Biological Chemistry.

[30]  B. Draper,et al.  dackel acts in the ectoderm of the zebrafish pectoral fin bud to maintain AER signaling. , 2000, Development.

[31]  C. Bandtlow,et al.  Proteoglycans in the developing brain: new conceptual insights for old proteins. , 2000, Physiological reviews.

[32]  H. Kitagawa,et al.  The EXT1/EXT2 tumor suppressors: catalytic activities and role in heparan sulfate biosynthesis , 2000, EMBO reports.

[33]  C. McCormick,et al.  The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[34]  M. Matzuk,et al.  Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. , 2000, Developmental biology.

[35]  S. Selleck,et al.  Structural Analysis of Glycosaminoglycans inDrosophila and Caenorhabditis elegans and Demonstration That tout-velu, a Drosophila Gene Related to EXT Tumor Suppressors, Affects Heparan Sulfate in Vivo * , 2000, The Journal of Biological Chemistry.

[36]  Stephen W. Wilson,et al.  Ace/Fgf8 is required for forebrain commissure formation and patterning of the telencephalon. , 2000, Development.

[37]  H. Kitagawa,et al.  rib-2, a Caenorhabditis elegansHomolog of the Human Tumor Suppressor EXT Genes Encodes a Novel α1,4-N-Acetylglucosaminyltransferase Involved in the Biosynthetic Initiation and Elongation of Heparan Sulfate* , 2001, The Journal of Biological Chemistry.

[38]  Huaiyu Hu Cell-surface heparan sulfate is involved in the repulsive guidance activities of Slit2 protein , 2001, Nature Neuroscience.

[39]  K. Leung,et al.  Heparan sulfate proteoglycan expression in the optic chiasm of mouse embryos , 2001, The Journal of comparative neurology.

[40]  Juan Carlos Izpisúa Belmonte,et al.  Patterning mechanisms controlling vertebrate limb development. , 2001, Annual review of cell and developmental biology.

[41]  C. Chien,et al.  Cloning and expression of three zebrafish roundabout homologs suggest roles in axon guidance and cell migration , 2001, Developmental dynamics : an official publication of the American Association of Anatomists.

[42]  C. McCormick,et al.  The link between heparan sulfate and hereditary bone disease: finding a function for the EXT family of putative tumor suppressor proteins. , 2001, The Journal of clinical investigation.

[43]  C. Chien,et al.  astray, a Zebrafish roundabout Homolog Required for Retinal Axon Guidance , 2001, Science.

[44]  H. Kitagawa,et al.  Human tumor suppressor EXT gene family members EXTL1 and EXTL3 encode α1,4- N-acetylglucosaminyltransferases that likely are involved in heparan sulfate/ heparin biosynthesis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[45]  R. U. Margolis,et al.  Characterization of Slit Protein Interactions with Glypican-1* , 2001, The Journal of Biological Chemistry.

[46]  M. Neff,et al.  Web-based primer design for single nucleotide polymorphism analysis. , 2002, Trends in genetics : TIG.

[47]  M. Princivalle,et al.  Developmental roles of heparan sulfate proteoglycans: a comparative review in Drosophila, mouse and human. , 2002, The International journal of developmental biology.

[48]  J. Esko,et al.  Hereditary multiple exostoses and heparan sulfate polymerization. , 2002, Biochimica et biophysica acta.

[49]  Norbert Perrimon,et al.  Heparan sulfate proteoglycan modulation of developmental signaling in Drosophila. , 2002, Biochimica et biophysica acta.

[50]  Chi-Bin Chien,et al.  Pathfinding and Error Correction by Retinal Axons The Role of astray/robo2 , 2002, Neuron.

[51]  H. Kitagawa,et al.  Demonstration of a Novel Gene DEXT3 ofDrosophila melanogaster as the EssentialN-Acetylglucosamine Transferase in the Heparan Sulfate Biosynthesis , 2002, The Journal of Biological Chemistry.

[52]  Atsushi Irie,et al.  Specific heparan sulfate structures involved in retinal axon targeting. , 2002, Development.

[53]  R. Myers,et al.  Rapid mapping of zebrafish mutations with SNPs and oligonucleotide microarrays. , 2002, Genome research.

[54]  Fumiyasu Taniguchi,et al.  Crystal Structure of an α1,4-N-Acetylhexosaminyltransferase (EXTL2), a Member of the Exostosin Gene Family Involved in Heparan Sulfate Biosynthesis* , 2003, The Journal of Biological Chemistry.

[55]  Stephen W. Wilson,et al.  N-cadherin mediates retinal lamination, maintenance of forebrain compartments and patterning of retinal neurites , 2003, Development.

[56]  D. O'Leary,et al.  Regulation of axial patterning of the retina and its topographic mapping in the brain , 2003, Current Opinion in Neurobiology.

[57]  M. Tessier-Lavigne,et al.  Mammalian Brain Morphogenesis and Midline Axon Guidance Require Heparan Sulfate , 2003, Science.

[58]  Stephen W. Wilson,et al.  Heparan Sulfate 6-O-Sulfotransferase Is Essential for Muscle Development in Zebrafish* , 2003, Journal of Biological Chemistry.

[59]  T. Shirasawa,et al.  EXT gene family member rib-2 is essential for embryonic development and heparan sulfate biosynthesis in Caenorhabditis elegans. , 2003, Biochemical and biophysical research communications.

[60]  S. Chan,et al.  Enzymatic removal of chondroitin sulphates abolishes the age‐related axon order in the optic tract of mouse embryos , 2003, The European journal of neuroscience.

[61]  M. Busse,et al.  In Vitro Polymerization of Heparan Sulfate Backbone by the EXT Proteins* , 2003, Journal of Biological Chemistry.

[62]  H. Kitagawa,et al.  In Vitro Heparan Sulfate Polymerization , 2003, Journal of Biological Chemistry.

[63]  H. Jäckle,et al.  Heparan Sulfate Proteoglycan Syndecan Promotes Axonal and Myotube Guidance by Slit/Robo Signaling , 2004, Current Biology.

[64]  Xinhua Lin,et al.  Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation , 2004, Development.

[65]  N. Perrimon,et al.  Developmental roles of heparan sulfate proteoglycans in Drosophila , 2002, Glycoconjugate Journal.

[66]  Tetsuya Tabata,et al.  Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans , 2004, Development.

[67]  D. V. Vactor,et al.  Axonal Heparan Sulfate Proteoglycans Regulate the Distribution and Efficiency of the Repellent Slit during Midline Axon Guidance , 2004, Current Biology.

[68]  S. Selleck,et al.  Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways , 2004, Development.

[69]  Johan Ledin,et al.  Heparan Sulfate Structure in Mice with Genetically Modified Heparan Sulfate Production* , 2004, Journal of Biological Chemistry.

[70]  O. Hobert,et al.  Differential Sulfations and Epimerization Define Heparan Sulfate Specificity in Nervous System Development , 2004, Neuron.