The use of total least squares data fitting in the shape-from-moments problem

In this paper we discuss the problem of recovering the vertices of a planar polygon from its measured complex moments. Because the given, measured moments can be noisy, the recovered vertices are only estimates of the true ones. The literature offers many algorithms for solving such an estimation problem. We will restrict our discussion to the Total Least Squares (TLS) data fitting models HTLS and STLS and the matrix pencil method GPOF. We show the close link between the HTLS and the GPOF method. We use the HTLS method to compute starting values for the STLS method. We compare the accuracy of these three methods on simulated data.

[1]  Michael Elad,et al.  Shape from moments - an estimation theory perspective , 2004, IEEE Transactions on Signal Processing.

[2]  S. Huffel,et al.  STRUCTURED TOTAL LEAST SQUARES Analysis, Algorithms and Applications , 2002 .

[3]  Jerry M. Mendel,et al.  The constrained total least squares technique and its applications to harmonic superresolution , 1991, IEEE Trans. Signal Process..

[4]  P. Laguna,et al.  Signal Processing , 2002, Yearbook of Medical Informatics.

[5]  Michael Elad,et al.  The Generalized Eigenvalue Problem for Nonsquare Pencils Using a Minimal Perturbation Approach , 2005, SIAM J. Matrix Anal. Appl..

[6]  Vladimir Spokoiny,et al.  On the shape–from–moments problem and recovering edges from noisy Radon data , 2004 .

[7]  P. Milanfar,et al.  Reconstructing planar domains from their moments , 2000 .

[8]  Arie Yeredor,et al.  Multiple delays estimation for chirp signals using structured total least squares , 2004 .

[9]  K. J. Ray Liu,et al.  A structured low-rank matrix pencil for spectral estimation and system identification , 1998, Signal Process..

[10]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[11]  K. J. Ray Liu,et al.  URV ESPRIT for tracking time-varying signals , 1994, IEEE Trans. Signal Process..

[12]  Peyman Milanfar,et al.  Reconstructing polygons from moments with connections to array processing , 1995, IEEE Trans. Signal Process..

[13]  Yoram Bresler,et al.  Exact maximum likelihood parameter estimation of superimposed exponential signals in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[14]  Peyman Milanfar,et al.  A Stable Numerical Method for Inverting Shape from Moments , 1999, SIAM J. Sci. Comput..

[15]  M. Brodsky,et al.  On the uniqueness of the inverse logarithmic potential problem , 1986 .

[16]  Raymond H. Chan,et al.  Iterative Methods in Scientific Computing , 1997 .

[17]  G. Golub,et al.  Separable nonlinear least squares: the variable projection method and its applications , 2003 .

[18]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.

[19]  Geoffrey Ye Li,et al.  A parameter estimation scheme for damped sinusoidal signals based on low-rank Hankel approximation , 1997, IEEE Trans. Signal Process..

[20]  Sabine Van Huffel,et al.  Formulation and solution of structured total least norm problems for parameter estimation , 1996, IEEE Trans. Signal Process..

[21]  S. Vanhuffel,et al.  Algorithm for time-domain NMR data fitting based on total least squares , 1994 .

[22]  James A. Cadzow,et al.  Signal enhancement-a composite property mapping algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..

[23]  Sabine Van Huffel,et al.  IQML-like algorithms for solving structured total least squares problems: a unified view , 2001, Signal Process..