Inflation in metric-affine quadratic gravity

In the general framework of Metric-Affine theories of gravity, where the metric and the connection are independent variables, we consider actions quadratic in the Ricci scalar curvature and the Holst invariant (the contraction of the Riemann curvature with the Levi-Civita antisymmetric tensor) coupled non-minimally to a scalar field. We study the profile of the equivalent effective metric theory, featuring an extra dynamical pseudoscalar degree of freedom, and show that it reduces to an effective single-field inflationary model. We analyze in detail the inflationary predictions and find that they fall within the latest observational bounds for a wide range of parameters, allowing for an increase in the tensor-to-scalar ratio. The spectral index can either decrease or increase depending on the position in parameter space.

[1]  S. Panda,et al.  Ultraviolet unitarity violations in non-minimally coupled scalar-Starobinsky inflation , 2022, Journal of Cosmology and Astroparticle Physics.

[2]  S. Panda,et al.  Constant-roll inflation in modified $$f(R,\phi )$$ f ( R , ϕ ) , 2022, The European Physical Journal C.

[3]  A. Lahanas Issues in Palatini ${\cal{R}}^2$ inflation: Bounds on the Reheating Temperature , 2022, 2210.00837.

[4]  I. Antoniadis,et al.  Late time acceleration in Palatini gravity , 2022, Journal of High Energy Physics.

[5]  A. Salvio Inflating and reheating the Universe with an independent affine connection , 2022, Physical Review D.

[6]  R. Durrer,et al.  Magnetogenesis in Higgs-Starobinsky inflation , 2022, Physical Review D.

[7]  A. Salvio,et al.  (In)equivalence of metric-affine and metric effective field theories , 2022, The European Physical Journal C.

[8]  Eemeli Tomberg,et al.  Palatini R 2 quintessential inflation , 2022, Journal of Cosmology and Astroparticle Physics.

[9]  S. Zell,et al.  Coupling metric-affine gravity to a Higgs-like scalar field , 2022, Physical Review D.

[10]  I. Antoniadis,et al.  Addendum to: Ultraviolet behaviour of Higgs inflation models , 2022, Journal of High Energy Physics.

[11]  Eemeli Tomberg,et al.  Modelling Quintessential Inflation in Palatini-Modified Gravity , 2022, Galaxies.

[12]  N. Chamoun,et al.  Natural Inflation with non minimal coupling to gravity in R 2 gravity under the Palatini formalism , 2022, Journal of Cosmology and Astroparticle Physics.

[13]  A. Racioppi,et al.  Slow-roll inflation in Palatini F(R) gravity , 2021, Journal of High Energy Physics.

[14]  R. Percacci,et al.  Metric-Affine Gravity as an effective field theory , 2021, Annals of Physics.

[15]  R. W. Ogburn,et al.  Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season. , 2021, Physical review letters.

[16]  S. Räsänen,et al.  Inflation with R (αβ) terms in the Palatini formulation , 2021, Journal of Cosmology and Astroparticle Physics.

[17]  V. Spanos,et al.  Scale-invariant quadratic gravity and inflation in the Palatini formalism , 2021, Physical Review D.

[18]  Diego Sáez-Chillón Gómez 3+1 decomposition in modified gravities within the Palatini formalism and some applications , 2021, Physical Review D.

[19]  K. Tamvakis,et al.  Extended interactions in the Palatini-R 2 inflation , 2021, Journal of Cosmology and Astroparticle Physics.

[20]  H. Veermäe,et al.  Tachyonic preheating in Palatini R 2 inflation , 2021, Journal of Cosmology and Astroparticle Physics.

[21]  K. Dimopoulos,et al.  Quintessential inflation in Palatini f(R) gravity , 2020, Physical Review D.

[22]  Damianos Iosifidis,et al.  Parity violating metric-affine gravity theories , 2020, Classical and Quantum Gravity.

[23]  D. Ghilencea Gauging scale symmetry and inflation: Weyl versus Palatini gravity , 2020, The European Physical Journal C.

[24]  S. Räsänen,et al.  Higgs inflation with the Holst and the Nieh–Yan term , 2020, Physical Review D.

[25]  M. Shaposhnikov,et al.  Erratum: Higgs inflation in Einstein-Cartan gravity , 2021, Journal of Cosmology and Astroparticle Physics.

[26]  Diego Sáez-Chillón Gómez,et al.  General Slow-Roll Inflation in f(R) Gravity under the Palatini Approach , 2020, Symmetry.

[27]  A. Racioppi,et al.  Dynamically induced Planck scale and inflation in the Palatini formulation , 2020, Journal of Cosmology and Astroparticle Physics.

[28]  Yong Tang,et al.  Weyl scaling invariant R2 gravity for inflation and dark matter , 2020, Physics Letters B.

[29]  Nayan Das,et al.  Inflation and Reheating in f(R,h) theory formulated in the Palatini formalism , 2020, Journal of Cosmology and Astroparticle Physics.

[30]  D. Ghilencea Palatini quadratic gravity: spontaneous breaking of gauged scale symmetry and inflation , 2020, The European Physical Journal C.

[31]  I. Antoniadis,et al.  Constant-roll in the Palatini-R2 models , 2020, Journal of Cosmology and Astroparticle Physics.

[32]  J. McDonald,et al.  Sub-Planckian $\phi^{2}$ Inflation in the Palatini Formulation of Gravity with an $R^2$ term , 2020, 2002.08324.

[33]  Tommi Tenkanen,et al.  Initial conditions for plateau inflation: a case study , 2020, Journal of Cosmology and Astroparticle Physics.

[34]  A. Lahanas,et al.  Reheating in R2 Palatini inflationary models , 2019, Physical Review D.

[35]  Tommi Tenkanen Trans-Planckian censorship, inflation, and dark matter , 2019, Physical Review D.

[36]  Y. Nakayama,et al.  Palatini formulation of pure R2 gravity yields Einstein gravity with no massless scalar , 2019, Physical Review D.

[37]  Tommi Tenkanen Minimal Higgs inflation with an R2 term in Palatini gravity , 2019, Physical Review D.

[38]  I. Antoniadis,et al.  Rescuing quartic and natural inflation in the Palatini formalism , 2018, Journal of Cosmology and Astroparticle Physics.

[39]  C. Tsagas,et al.  Torsion/nonmetricity duality in f(R) gravity , 2018, General Relativity and Gravitation.

[40]  S. Räsänen,et al.  Inflation with R2 term in the Palatini formulation , 2018, Journal of Cosmology and Astroparticle Physics.

[41]  G. Montani,et al.  Big bounce cosmology for Palatini $$R^2$$R2 gravity with a Nieh–Yan term , 2018, The European Physical Journal C.

[42]  I. Antoniadis,et al.  Palatini inflation in models with an R2 term , 2018, Journal of Cosmology and Astroparticle Physics.

[43]  J. Aumont,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[44]  Shaul Hanany,et al.  PICO - the probe of inflation and cosmic origins , 2018, Astronomical Telescopes + Instrumentation.

[45]  G. Hilton,et al.  LiteBIRD: Mission Overview and Focal Plane Layout , 2016 .

[46]  Jérôme Martin,et al.  K-inflationary power spectra at second order , 2013, 1303.2120.

[47]  Antonio Padilla,et al.  Modified Gravity and Cosmology , 2011, 1106.2476.

[48]  S. Capozziello,et al.  Extended Theories of Gravity , 2011, 1108.6266.

[49]  M. Halpern,et al.  The Primordial Inflation Explorer (PIXIE): a nulling polarimeter for cosmic microwave background observations , 2011, 1105.2044.

[50]  G. Olmo Palatini Approach to Modified Gravity: f(R) Theories and Beyond , 2011, 1101.3864.

[51]  S. Tsujikawa,et al.  f(R) Theories , 2010, Living reviews in relativity.

[52]  T. Sotiriou,et al.  f(R) Theories Of Gravity , 2008, 0805.1726.

[53]  M. Borunda,et al.  Palatini versus metric formulation in higher-curvature gravity , 2008, 0804.4440.

[54]  F. Bauer,et al.  Inflation with non-minimal coupling: Metric vs. Palatini formulations , 2008, 0803.2664.

[55]  M. Shaposhnikov,et al.  The Standard Model Higgs boson as the inflaton , 2007, 0710.3755.

[56]  S. Liberati,et al.  Metric-affine f(R) theories of gravity , 2006, gr-qc/0604006.

[57]  A. Liddle,et al.  How long before the end of inflation were observable perturbations produced , 2003, astro-ph/0305263.

[58]  G. Immirzi Quantum gravity and Regge calculus , 1997, gr-qc/9701052.

[59]  G. Immirzi Real and complex connections for canonical gravity , 1996, gr-qc/9612030.

[60]  Holst,et al.  Barbero's Hamiltonian derived from a generalized Hilbert-Palatini action. , 1995, Physical review. D, Particles and fields.

[61]  J. Mccrea,et al.  Metric affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance , 1994, gr-qc/9402012.

[62]  Michael S. Turner,et al.  Spontaneous Creation of Almost Scale - Free Density Perturbations in an Inflationary Universe , 1983 .

[63]  A. Starobinsky,et al.  Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations , 1982 .

[64]  Alan H. Guth,et al.  Fluctuations in the New Inflationary Universe , 1982 .

[65]  Stephen W. Hawking,et al.  The Development of Irregularities in a Single Bubble Inflationary Universe , 1982 .

[66]  Andreas Albrecht,et al.  Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking , 1982 .

[67]  Andrei Linde,et al.  A new inflationary universe scenario: A possible solution of the horizon , 1982 .

[68]  Katsuhiko Sato,et al.  First-order phase transition of a vacuum and the expansion of the Universe , 1981 .

[69]  Viatcheslav Mukhanov,et al.  Quantum Fluctuations and a Nonsingular Universe , 1981 .

[70]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .

[71]  D. Kazanas Dynamics of the universe and spontaneous symmetry breaking , 1980 .

[72]  R. Hojman,et al.  Parity violation in metric-torsion theories of gravitation , 1980 .

[73]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[74]  A. Starobinsky Spectrum of relict gravitational radiation and the early state of the universe , 1979 .

[75]  A. Palatini Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton , 1919 .