Discriminative Approach to Fill-in-the-Blank Quiz Generation for Language Learners

We propose discriminative methods to generate semantic distractors of fill-in-theblank quiz for language learners using a large-scale language learners’ corpus. Unlike previous studies, the proposed methods aim at satisfying both reliability and validity of generated distractors; distractors should be exclusive against answers to avoid multiple answers in one quiz, and distractors should discriminate learners’ proficiency. Detailed user evaluation with 3 native and 23 non-native speakers of English shows that our methods achieve better reliability and validity than previous methods.