Amyotrophic Lateral Sclerosis Immunoglobulins Increase Intracellular Calcium in a Motoneuron Cell Line

A hybrid motoneuron cell line (VSC4.1) was used as a model system to study the relationship between alterations in intracellular calcium and subsequent cell death induced by immunoglobulin fractions purified from sera of patients with ALS. Using fluo-3 fluorescence imaging, immunoglobulins from 8 of 10 patients with ALS were found to induce transient increases in intracellular calcium ([Ca2+]i) in differentiated VSC4.1 cells. These transient [Ca2+]i increases required extracellular calcium entry through voltage-gated calcium channels sensitive to synthetic FTX and to high concentrations (>1 microM) of omega-agatoxin IVa. The incidence of transient [Ca2+]i increases induced by ALS immunoglobulins correlated with the extent of cytotoxicity induced by the same ALS immunoglobulins in parallel cultures of VSC4.1 cells. Furthermore, manipulations which blocked transient [Ca2+]i increases (addition of synthetic FTX or omega-agatoxin IVa) also inhibited the cytotoxic effects of ALS immunoglobulins. No transient calcium increases were observed in VSC4.1 cells following addition of immunoglobulins from 7 neurologic disease control patients. However, transient [Ca2+]i increases were observed following addition of immunoglobulins from 4 of 5 patients with myasthenia gravis (MG). The [Ca2+]i changes induced by MG immunoglobulins were not blocked by s-FTX, suggesting that they result from a different mechanism than those induced by ALS immunoglobulins. These results suggest that immunoglobulins from patients with ALS can induce transient increases in intracellular calcium in a motoneuron cell line, which may represent early events in the cascade of processes leading to injury and death of susceptible cells.

[1]  L. Komuves,et al.  Antibodies to calcium channels from ALS patients passively transferred to mice selectively increase intracellular calcium and induce ultrastructural changes in motoneurons , 1995, Synapse.

[2]  E. Stefani,et al.  Amyotrophic lateral sclerosis immunoglobulins increase Ca2+ currents in a motoneuron cell line , 1995, Annals of neurology.

[3]  P. Shaw,et al.  Excitotoxicity and motor neurone disease: A review of the evidence , 1994, Journal of the Neurological Sciences.

[4]  E. Stefani,et al.  Cytotoxicity of immunoglobulins from amyotrophic lateral sclerosis patients on a hybrid motoneuron cell line. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[5]  R. Tsien,et al.  Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons , 1993, Neuropharmacology.

[6]  Charles Tator,et al.  Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  J. Dubinsky Intracellular calcium levels during the period of delayed excitotoxicity , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  E. Stefani,et al.  Serum antibodies to L-type calcium channels in patients with amyotrophic lateral sclerosis. , 1992, The New England journal of medicine.

[9]  E. Stefani,et al.  A novel N18TG2 x mesencephalon cell hybrid expresses properties that suggest a dopaminergic cell line of substantia nigra origin , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  Samuel Thayer,et al.  Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  M Segal,et al.  Confocal microscopic imaging of [Ca2+]i in cultured rat hippocampal neurons following exposure to N‐methyl‐D‐aspartate. , 1992, The Journal of physiology.

[12]  M. Adams,et al.  P-type calcium channels blocked by the spider toxin ω-Aga-IVA , 1992, Nature.

[13]  E. Stefani,et al.  Immunoglobulins from animal models of motor neuron disease and from human amyotrophic lateral sclerosis patients passively transfer physiological abnormalities to the neuromuscular junction. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[14]  S. Appel,et al.  Motor neuron destruction in guinea pigs immunized with bovine spinal cord ventral horn homogenate: experimental autoimmune gray matter disease , 1990, Journal of Neuroimmunology.

[15]  R Y Tsien,et al.  Photochemically generated cytosolic calcium pulses and their detection by fluo-3. , 1989, The Journal of biological chemistry.

[16]  A. Kriegstein,et al.  Glutamate neurotoxicity in cortical cell culture , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  S. Appel,et al.  Amyotrophic lateral sclerosis. Associated clinical disorders and immunological evaluations. , 1986, Archives of neurology.

[18]  B. Katz,et al.  Further study of the role of calcium in synaptic transmission , 1970, The Journal of physiology.