Projected increase in continental runoff due to plant responses to increasing carbon dioxide

[1]  N. L. Binbol,et al.  Hydrology and Water Resources , 2007 .

[2]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[3]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[4]  S. Long,et al.  Food for Thought: Lower-Than-Expected Crop Yield Stimulation with Rising CO2 Concentrations , 2006, Science.

[5]  Jacek Stankiewicz,et al.  Changes in Surface Water Supply Across Africa with Predicted Climate Change , 2006, Science.

[6]  R. Betts,et al.  Detection of a direct carbon dioxide effect in continental river runoff records , 2006, Nature.

[7]  I. Musat,et al.  On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles , 2006 .

[8]  D. Gerten,et al.  Global effects of doubled atmospheric CO2 content on evapotranspiration, soil moisture and runoff under potential natural vegetation , 2006 .

[9]  Rachel Warren,et al.  Impacts of global climate change at different annual mean global temperature increases , 2006 .

[10]  M. Webb,et al.  Quantification of modelling uncertainties in a large ensemble of climate change simulations , 2004, Nature.

[11]  R. Betts,et al.  The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming , 2004 .

[12]  M. Roderick,et al.  The cause of decreased pan evaporation over the past 50 years. , 2002, Science.

[13]  J. Tenhunen,et al.  Evapotranspiration and soil water content in a scrub‐oak woodland under carbon dioxide enrichment , 2002 .

[14]  F. Woodward,et al.  Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models , 2001 .

[15]  Peter M. Cox,et al.  Description of the "TRIFFID" Dynamic Global Vegetation Model , 2001 .

[16]  R. Betts,et al.  Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model , 2000, Nature.

[17]  H. Douville,et al.  Importance of vegetation feedbacks in doubled‐CO2 climate experiments , 2000 .

[18]  F. Woodward,et al.  Simulated responses of potential vegetation to doubled‐CO2 climate change and feedbacks on near‐surface temperature , 2000 .

[19]  R. Betts,et al.  Self‐beneficial effects of vegetation on climate in an ocean‐atmosphere general circulation model , 1999 .

[20]  R. Betts,et al.  The impact of new land surface physics on the GCM simulation of climate and climate sensitivity , 1999 .

[21]  Susan E. Lee,et al.  Contrasting physiological and structural vegetation feedbacks in climate change simulations , 1997, Nature.

[22]  G. J. Collatz,et al.  Comparison of Radiative and Physiological Effects of Doubled Atmospheric CO2 on Climate , 1996, Science.

[23]  Christopher B. Field,et al.  Stomatal responses to increased CO2: implications from the plant to the global scale , 1995 .

[24]  J. Houghton Climate change 1994 : radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios , 1995 .

[25]  C. Jacobs,et al.  Direct impact of atmospheric CO2 enrichment on regional transpiration , 1994 .

[26]  C. Field,et al.  A reanalysis using improved leaf models and a new canopy integration scheme , 1992 .

[27]  G. Collatz,et al.  Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C4 Plants , 1992 .

[28]  G. Collatz,et al.  Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer , 1991 .

[29]  P. Sellers Canopy reflectance, photosynthesis and transpiration , 1985 .

[30]  T. Wigley,et al.  Influences of precipitation changes and direct CO2 effects on streamflow , 1985, Nature.