EXCESS workshop: Descriptions of rising low-energy spectra

Many low-threshold experiments observe sharply rising event rates of yet unknown origins below a few hundred eV, and larger than expected from known backgrounds. Due to the significant impact of this excess on the dark matter or neutrino sensitivity of these experiments, a collective effort has been started to share the knowledge about the individual observations. For this, the EXCESS Workshop was initiated. In its first iteration in June 2021, ten rare event search collaborations contributed to this initiative via talks and discussions. The contributing collaborations were CONNIE, CRESST, DAMIC, EDELWEISS, MINER, NEWS-G, NUCLEUS, RICOCHET, SENSEI and SuperCDMS. They presented data about their observed energy spectra and known backgrounds together with details about the respective measurements. In this paper, we summarize the presented information and give a comprehensive overview of the similarities and differences between the distinct measurements. The provided data is furthermore publicly available on the workshop's data repository together with a plotting tool for visualization.

V. M. Ghete | D. Amidei | B. Kilminster | C. Pagliarone | M. Friedl | A. Drlica-Wagner | A. Bertolini | J. Stachurska | J. Estrada | E. Etzion | T. Neep | J. Schieck | L. Stodolsky | S. Schonert | P. Privitera | P. Cushman | M. Zampaolo | I. Giomataris | A. Benoit | Y.‐T. Lin | M. Gros | A. Letessier-Selvon | M. Willers | L. Winslow | G. Brès | S. Marnieros | L. Dumoulin | E. Olivieri | C. Oriol | E. Figueroa-Feliciano | T. Saab | N. Schermer | J. Minet | A. Chavarria | L. Oberauer | F. Feilitzsch | I. Sidelnik | A. Stutz | F. Wagner | G. Gerbier | E. Michielin | D. Hauff | I. Lawson | J. Orrell | J. Formaggio | I. Manthos | H. Theenhausen | J. Jochum | T. Lasserre | D. Lhuillier | A. Onillon | W. Potzel | J. Réal | A. Cazes | E. Mazzucato | J. Mols | A. Robert | G. Benato | A. Lubashevskiy | V. Wagner | D. Zinatulina | S. Hertel | A. Aguilar-Arevalo | J. Cooley | J. Ianigro | J. Muraz | M. Vivier | R. Essig | V. Guidi | Z. Hong | M. Olmi | V. Sibille | R. Gaior | V. Belov | A. Bento | G. Angloher | R. Cerulli | P. Camus | O. Guillaudin | A. Monfardini | J. Bret | A. Mazzolari | N. Kurinsky | N. Mirabolfathi | I. Savvidis | H. Kraus | H. Chen | E. Hoppe | W. V. D. Pontseele | I. Colantoni | L. Klinkenberg | S. Munagavalasa | T. Volansky | P. Pari | G. Cancelo | F. Cappella | J. Billard | D. Santos | E. Guy | A. Botti | J. D'Olivo | J. Matthews | M. Settimo | Y. Guardincerri | P. Lautridou | J. Tiffenberg | J. Lamblin | R. Šmída | M. Crisler | L. Cardani | N. Casali | A. Cruciani | C. Tomei | M. Vignati | M. Piro | S. Banik | R. Bunker | M. Ghaith | V. Iyer | A. Jastram | R. Mahapatra | J. Sander | C. Bucci | T. Redon | J. Goupy | A. Juillard | M. Stahlberg | M. Calvo | E. Yakushev | V. Kashyap | A. Virto | A. Broniatowski | M. Chapellier | J. Gascon | A. Giuliani | L. Marini | L. Canonica | A. Erb | N. F. Iachellini | P. Gorla | H. Kluck | F. Petricca | F. Reindl | C. Strandhagen | R. Strauss | I. Usherov | C. Nones | V. Novati | D. Poda | A. Zolotarova | A. Kubík | L. Pattavina | A. D’Addabbo | M. Mancuso | B. Schmidt | R. Breier | D. Baxter | G. Giroux | P. Mitra | F. Mounier | M. Cababie | K. Dering | P. Gorel | S. Langrock | J. Johnston | D. Mayer | C. Augier | D. Filosofov | H. Neog | A. Brossard | J.-M. Coquillat | E. Corcoran | S. Crawford | Y. Deng | D. Durnford | I. Katsioulas | F. Kelly | P. Knights | G. Savvidis | M. Vidal | N. Saffold | S. Uemura | R. Thomas | S. D. Lorenzo | S. Rozov | G. F. Moroni | M. S. Haro | X. Navick | S. Gupta | J. Dent | L. Stefanazzi | T. Hossbach | B. Krosigk | A. Nilima | C. Beaufort | M. Chaudhuri | S. Maludze | B. Mohanty | A. Thompson | G. Beaulieu | B. C. Vergara | F. Favela-Pérez | A. Matalon | C. Overman | A. Piers | K. Ramanathan | Youssef Sarkis Mobarak | M. Traina | D. Ponomarev | I. Rozova | S. Ferriol | E. Armengaud | B. Mauri | D. Misiak | V. Sanglard | K. Nikolopoulos | I. M. Bloch | J. Caron | L. Berg'e | F. Charlieux | M. D. J'esus | J. Filippini | Y. Jin | H. Lattaud | T. Salagnac | L. Vagneron | T. Soldner | R. Ren | S. L. Watkins | M. Wilson | A. Zaytsev | D. Fuchs | J. Rothe | L. Scola | L. Balogh | C. Goupy | D. Rodrigues | V. Mokina | Ye. Shevchik | G. Chemin | A. Kinast | J. Mocellin | F. Chierchie | E. L. Depaoli | S. Fichtinger | C. Goy | C. Guerin | D. Karaivanov | S. Dharani | K. Schaffner | R. Rogly | L. Einfalt | M. Kaznacheeva | O. Exshaw | J. Coquillat | A. Dastgheibi-Fard | P. O'Brien | N. Rowe | F. Fernandez | F. Probst | P. Povinec | V. Savu | V. Zema | J. Colas | T. Yu | S. Lee | F. Pucci | C. Garrah | A. Singal | M. Li | L. Chaplinsky | H. D. Pinckney | R. D. Martin | A. Fuss | D. Schmiedmayer | C. Schwertner | D. Chaize | P. Adari | R. Bhattacharyya | A. Erhart | T. Ortmann | S. E. Holland | A. Langenkamper | Y. B. Gal | G. Castello | R. Chen | B. Dutta | S. Fuard | A. Garai | D. Gift | P. Gros | P. Harrington | S. Heine | M. Jevskovsk'y | S. Kazarcev | Y. Korn | M. Lee | K. Mirbach | H. Neyrial | A. Orly | V. Paluvsov'a | P. Patel | M. Platt | J. Rocha | J. Walker | R. Ward | A. Wex | I. Bloch | V. Ghete | S. Watkins | K. V. Mirbach | K. Nikolopoulos | H. Z. Theenhausen | J. Schieck | S. Ferriol | G. Moroni | A. L. Virto | E. Depaoli

[1]  Y. Kahn,et al.  Revisiting the dark matter interpretation of excess rates in semiconductors , 2022, Physical Review D.

[2]  D. Amidei,et al.  Characterization of the background spectrum in DAMIC at SNOLAB , 2021, Physical Review D.

[3]  R. Essig,et al.  Sources of Low-Energy Events in Low-Threshold Dark-Matter and Neutrino Detectors , 2020, Physical Review X.

[4]  K. Tuominen,et al.  Identification of the low-energy excess in dark matter searches with crystal defects , 2021, Physical Review D.

[5]  S. Marnieros,et al.  Optimization and Performance of the CryoCube Detector for the Future Ricochet Low-Energy Neutrino Experiment , 2021, Journal of Low Temperature Physics.

[6]  G. Brès,et al.  HEMT-based 1K front-end electronics for the heat and ionization Ge CryoCube of the future RICOCHET CE$\nu$NS experiment , 2021, 2111.10308.

[7]  J. Stachurska,et al.  Ricochet Progress and Status , 2021, Journal of Low Temperature Physics.

[8]  J. Estrada,et al.  The Skipper CCD for low-energy threshold particle experiments above ground , 2021, 2107.00168.

[9]  P. Lukens,et al.  Design and characterization of a phonon-mediated cryogenic particle detector with an eV-scale threshold and 100 keV-scale dynamic range , 2020, Physical Review D.

[10]  S. Knapen,et al.  Migdal Effect in Semiconductors. , 2020, Physical review letters.

[11]  M. Pospelov,et al.  Millicharged cosmic rays and low recoil detectors , 2020, Physical Review D.

[12]  H. R. Harris,et al.  Light Dark Matter Search with a High-Resolution Athermal Phonon Detector Operated above Ground. , 2020, Physical review letters.

[13]  SENSEI: Characterization of Single-Electron Events Using a Skipper-CCD , 2021 .

[14]  R. Essig,et al.  Sources of Low-Energy Events in Low-Threshold Dark Matter Detectors , 2020 .

[15]  V. C. Antochi,et al.  Excess electronic recoil events in XENON1T , 2020, Physical Review D.

[16]  M. Platt,et al.  Performance of a large area photon detector for rare event search applications , 2020, 2009.14302.

[17]  K. Nikolopoulos,et al.  Copper electroplating for background suppression in the NEWS-G experiment , 2020, 2008.03153.

[18]  D. Amidei,et al.  Results on low-mass weakly interacting massive particles from a 11 kg d target exposure of DAMIC at SNOLAB , 2021, Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021).

[19]  H. R. Harris,et al.  Constraints on low-mass, relic dark matter candidates from a surface-operated SuperCDMS single-charge sensitive detector , 2020, Physical Review D.

[20]  J. Estrada,et al.  Absolute measurement of the Fano factor using a Skipper-CCD , 2020, 2004.11499.

[21]  A. Drlica-Wagner,et al.  SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper CCD. , 2020, Physical review letters.

[22]  K. Ramanathan,et al.  Ionization yield in silicon for eV-scale electron-recoil processes , 2020, 2004.10709.

[23]  Jianbei Liu,et al.  Production and performance study of Diamond-Like Carbon resistive electrode in MPGD , 2020 .

[24]  K. Nikolopoulos,et al.  A resistive ACHINOS multi-anode structure with DLC coating for spherical proportional counters , 2020, Journal of Instrumentation.

[25]  B. Paul,et al.  First Germanium-Based Constraints on Sub-MeV Dark Matter with the EDELWEISS Experiment. , 2020, Physical review letters.

[26]  Y. Kahn,et al.  Dark matter interpretation of excesses in multiple direct detection experiments , 2020, 2002.06937.

[27]  Betty A. Young,et al.  Measuring the impact ionization and charge trapping probabilities in SuperCDMS HVeV phonon sensing detectors , 2019, Physical Review D.

[28]  D. Amidei,et al.  DAMIC at SNOLAB , 2014, Journal of Physics: Conference Series.

[29]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[30]  V. M. Ghete,et al.  NUCLEUS: Exploring Coherent Neutrino-Nucleus Scattering with Cryogenic Detectors , 2019, Journal of Low Temperature Physics.

[31]  A. Meregaglia A new neutrinoless double beta decay experiment: R2D2 , 2019, Journal of Physics: Conference Series.

[32]  D. Amidei,et al.  Constraints on Light Dark Matter Particles Interacting with Electrons from DAMIC at SNOLAB. , 2019, Physical review letters.

[33]  C. Pagliarone,et al.  First results from the CRESST-III low-mass dark matter program , 2019, Physical Review D.

[34]  G. Cancelo,et al.  Low Threshold Acquisition Controller for Skipper Charge Coupled Devices , 2019, 2019 Argentine Conference on Electronics (CAE).

[35]  K. Nikolopoulos,et al.  Precision laser-based measurements of the single electron response of spherical proportional counters for the NEWS-G light dark matter search experiment , 2019, Physical Review D.

[36]  B. Paul,et al.  Searching for low-mass dark matter particles with a massive Ge bolometer operated above ground , 2019, Physical Review D.

[37]  D. Hauff,et al.  A method to define the energy threshold depending on noise level for rare event searches , 2017, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[38]  H. R. Harris,et al.  First Dark Matter Constraints from a SuperCDMS Single-Charge Sensitive Detector. , 2018, Physical review letters.

[39]  D. Asner,et al.  First results from the NEWS-G direct dark matter search experiment at the LSM , 2017, 1706.04934.

[40]  Betty A. Young,et al.  Thermal detection of single e-h pairs in a biased silicon crystal detector , 2017, 1710.09335.

[41]  I. Giomataris,et al.  A multiball read-out for the spherical proportional counter , 2017, 1707.09254.

[42]  C. Pagliarone,et al.  Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground , 2017, The European Physical Journal C.

[43]  E. Armengaud,et al.  Performance of the EDELWEISS-III experiment for direct dark matter searches , 2017, 1706.01070.

[44]  Alex Drlica-Wagner,et al.  Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD. , 2017, Physical review letters.

[45]  J. Schieck,et al.  Gram-scale cryogenic calorimeters for rare-event searches , 2017, 1704.04317.

[46]  L. Winslow,et al.  Coherent Neutrino Scattering with Low Temperature Bolometers at Chooz Reactor Complex , 2016, 1612.09035.

[47]  H. R. Harris,et al.  Background studies for the MINER Coherent Neutrino Scattering reactor experiment , 2016, 1609.02066.

[48]  B. Kilminster,et al.  The CONNIE experiment , 2016, 1608.01565.

[49]  J. Estrada,et al.  Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector , 2016, 1608.00957.

[50]  B. Kilminster,et al.  Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMIC experiment at SNOLAB , 2016, 1607.07410.

[51]  B. Paul,et al.  Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach , 2016, 1607.03367.

[52]  Low energy recoil detection with a spherical proportional counter , 2016, 1606.02146.

[53]  B. Neganov,et al.  Colorimetric method measuring ionizing radiation , 2016 .

[54]  M. Fernández-Serra,et al.  Direct detection of sub-GeV dark matter with semiconductor targets , 2015, 1509.01598.

[55]  N. Overman,et al.  Reduction of radioactive backgrounds in electroformed copper for ultra-sensitive radiation detectors , 2014 .

[56]  J. Schieck,et al.  Beta/gamma and alpha backgrounds in CRESST-II Phase 2 , 2014, 1410.4188.

[57]  A. Anderson Phonon-Based Position Determination in SuperCDMS iZIP Detectors , 2014, 1405.4215.

[58]  F. Piquemal Modane underground laboratory: Status and project , 2012 .

[59]  R. Essig,et al.  Direct Detection of Sub-GeV Dark Matter , 2011, 1108.5383.

[60]  Kenneth Patton,et al.  Status of the Dark Energy Survey Camera (DECam) project , 2010, Other Conferences.

[61]  D. Sinclair,et al.  The Construction and Anticipated Science of SNOLAB , 2010 .

[62]  A. Aurisano,et al.  Observation of muon intensity variations by season with the MINOS far detector , 2009, 0909.4012.

[63]  Timothy M. C. Abbott,et al.  Status of the dark energy survey camera (DECam) project , 2010, Astronomical Telescopes + Instrumentation.

[64]  L. Stodolsky,et al.  Commissioning run of the CRESST-II dark matter search , 2008, 0809.1829.

[65]  P. Colas,et al.  A Novel large-volume Spherical Detector with Proportional Amplification read-out , 2008, 0807.2802.

[66]  B. Cabrera Introduction to TES Physics , 2008 .

[67]  D. Lange,et al.  Cosmic-ray shower generator (CRY) for Monte Carlo transport codes , 2007, 2007 IEEE Nuclear Science Symposium Conference Record.

[68]  L. Stodolsky,et al.  Limits on WIMP dark matter using scintillating CaWO4 cryogenic detectors with active background suppression , 2004, astro-ph/0408006.

[69]  J. Janesick,et al.  Scientific Charge-Coupled Devices , 2001 .

[70]  Betty A. Young,et al.  A QUASIPARTICLE-TRAP-ASSISTED TRANSITION-EDGE SENSOR FOR PHONON-MEDIATED PARTICLE DETECTION , 1995 .

[71]  A. Nucciotti,et al.  Model for cryogenic particle detectors with superconducting phase transition thermometers , 1995 .

[72]  Eugene E. Haller,et al.  Neutron transmutation doped natural and isotopically engineered germanium thermistors , 1994, Astronomical Telescopes and Instrumentation.

[73]  Haller,et al.  Electrical and thermal properties of neutron-transmutation-doped Ge at 20 mK. , 1990, Physical review. B, Condensed matter.

[74]  P. Luke Voltage‐assisted calorimetric ionization detector , 1988 .

[75]  I. Bronić,et al.  The Mean Energy Required to Form an Ion Pair for Low-Energy Photons and Electrons in Polyatomic Gases , 1988 .

[76]  P. F. Manfredi,et al.  Processing the signals from solid-state detectors in elementary-particle physics , 1986 .

[77]  B. Grosswendt,et al.  Spatial energy dissipation profiles, W values, backscatter coefficients, and ranges for low-energy electrons in methane , 1983 .

[78]  D. Combecher Measurement of W Values of Low-Energy Electrons in Several Gases , 1980 .

[79]  S. Reed,et al.  Escape peaks and internal fluorescence in X-ray spectra recorded with lithium drifted silicon detectors , 1972 .