Electrical transport and optical emission of MnxZr1-xO2(0≤x≤0.5) thin films

Mnx Zr1-x O2 (MnZO) thin films were grown by pulsed-laser deposition on single crystalline yttria-stabilized zirconia (YSZ) and a-plane sapphire substrates with manganese contents from 0 up to about 50 at.%. A fully stabilized cubic structure occurs for Mn contents x equal or larger than 20 at. % on YSZ substrates. For x ≈0.5, phase separation of Mn-oxides occurs. Below 11 at. %, only the monoclinic phase is observed. The thin films are electrically insulating up to x = 0.3. By further increasing the Mn content or by reducing the structural quality, the resistivity ρ decreases from 3×109Ωcm down to 3×104Ωcm. For MnZO thin films on a-plane sapphire substrates, Seebeck-effect measurements verify a transition from p-type conductivity to n-type conductivity around 500 K with increasing temperature, which is probably governed by an enhanced ionic conduction. Cathodoluminescence measurements clearly show a Mn-related emission at about 2.8 eV, correlated to an Mn-induced electronic state in the bandgap of MnZO. ...

[1]  M. Grundmann,et al.  Defect-induced ferromagnetism in undoped and Mn-doped zirconia thin films , 2010 .

[2]  H. Morgner,et al.  Influence of the aliphatic chain length of imidazolium based ionic liquids on the surface structure. , 2010, Physical chemistry chemical physics : PCCP.

[3]  S. Senz,et al.  Structure of epitaxial Mn-stabilized ZrO2 layers on yttria-stabilized zirconia single crystals prepared by sputtering , 2009 .

[4]  A. Karydas,et al.  Stabilization of very high-k tetragonal phase in Ge-doped ZrO2 films grown by atomic oxygen beam deposition , 2009 .

[5]  N. Bonanos,et al.  Ionic conductivity and thermal stability of magnetron-sputtered nanocrystalline yttria-stabilized zirconia , 2009 .

[6]  Stephen Taylor,et al.  Dielectric relaxation of lanthanum doped zirconium oxide , 2009 .

[7]  Wei Yang,et al.  Structure and magnetism in Mn-doped zirconia: Density-functional theory studies , 2008, 0809.4127.

[8]  P. Sushko,et al.  Oxygen vacancies in cubic ZrO2 nanocrystals studied by an ab initio embedded cluster method , 2008 .

[9]  C. L. Cheung,et al.  Local structures surrounding Zr in nanostructurally stabilized cubic zirconia: Structural origin of phase stability , 2008 .

[10]  O. Toma,et al.  High-k dielectric oxides obtained by PLD as solution for gates dielectric in MOS devices , 2007 .

[11]  L. Sandratskii,et al.  Mn-stabilized zirconia: from imitation diamonds to a new potential high-Tc ferromagnetic spintronics material. , 2007, Physical review letters.

[12]  T. Mori,et al.  Photoluminescence excitation bands corresponding to defect states due to oxygen vacancies in yttria-stabilized zirconia , 2006 .

[13]  O. Boffoue,et al.  Experimental setup for the measurement of the electrical resistivity and thermopower of thin films and bulk materials , 2005 .

[14]  Yoshimichi Ohki,et al.  Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons , 2005 .

[15]  D. Yuan,et al.  Preparation and luminescent characteristics of Mn2+, Er3+ co-doped ZrO2 nanocrystals , 2003 .

[16]  Xin Guo,et al.  Grain size dependent grain boundary defect structure: case of doped zirconia , 2003 .

[17]  G. Busca,et al.  Structural and morphological characterization of Mn–Zr mixed oxides prepared by a sol–gel method , 2002 .

[18]  M. Finnis,et al.  Electron energy-loss near-edge shape as a probe to investigate the stabilization of yttria-stabilized zirconia , 2002 .

[19]  W. C. Tjiu,et al.  Crystalline zirconia oxide on silicon as alternative gate dielectrics , 2001 .

[20]  T. Orlando,et al.  Laser-stimulated luminescence of yttria-stabilized cubic zirconia crystals , 1999 .

[21]  D. Banerjee,et al.  Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation , 1998 .

[22]  A. Boyer,et al.  Electrical and optical properties of magnetron-sputtered Y2O3 stabilized ZrO2 thin films , 1997 .

[23]  A. V. Ramaswamy,et al.  MN-STABILIZED ZIRCONIA CATALYSTS FOR COMPLETE OXIDATION OF N-BUTANE , 1996 .

[24]  A. Marucci,et al.  Manganese oxide–zirconium oxide solid solutions. An X-ray diffraction, Raman spectroscopy, thermogravimetry and magnetic study , 1996 .

[25]  W. Weppner,et al.  Characteristics of transition metal oxide doping of YSZ: structure and electrical properties , 1996 .

[26]  A. Shluger,et al.  Theoretical study of the stabilization of cubic-phase ZrO2 by impurities. , 1994, Physical review. B, Condensed matter.

[27]  Chen,et al.  X-ray-absorption studies of zirconia polymorphs. I. Characteristic local structures. , 1993, Physical review. B, Condensed matter.

[28]  N. Minh Ceramic Fuel Cells , 1993 .

[29]  M. Sayer,et al.  Rapid thermal processing of zirconia thin films produced by the sol-gel method , 1991 .

[30]  R. J. Hill,et al.  Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction , 1988 .

[31]  C. Klingshirn,et al.  Absorption and emission spectra of yttria-stabilized zirconia and magnesium oxide , 1987 .

[32]  K. Tanabe Surface and catalytic properties of ZrO2 , 1985 .

[33]  S. Badwal Electrical conductivity of single crystal and polycrystalline yttria-stabilized zirconia , 1984 .

[34]  R. Hannink Microstructural development of sub-eutectoid aged MgO-ZrO2 alloys , 1983 .

[35]  A. Heuer,et al.  Precipitation and ordering in calcia- and yttria-stabilized zirconia , 1980 .

[36]  W. Weppner Electronic transport properties and electrically induced p-n junction in ZrO2 + 10 m/o Y2O3 , 1977 .

[37]  Rajendra P. Gupta,et al.  Calculation of multiplet structure of core p -vacancy levels. II , 1974 .

[38]  J. C. Scott,et al.  Conduction mechanism in yttria stabilized zirconia , 1967 .

[39]  D. Strickler,et al.  Electrical Conductivity in the ZrO2-Rich Region of Several M2O3—ZrO2 Systems , 1965 .