Functional archetype and archetypoid analysis

Archetype and archetypoid analysis can be extended to functional data. Each function is approximated by a convex combination of actual observations (functional archetypoids) or functional archetypes, which are a convex combination of observations in the data set. Well-known Canadian temperature data are used to illustrate the analysis developed. Computational methods are proposed for performing these analyses, based on the coefficients of a basis. Unlike a previous attempt to compute functional archetypes, which was only valid for an orthogonal basis, the proposed methodology can be used for any basis. It is computationally less demanding than the simple approach of discretizing the functions. Multivariate functional archetype and archetypoid analysis are also introduced and applied in an interesting problem about the study of human development around the world over the last 50 years. These tools can contribute to the understanding of a functional data set, as in the classical multivariate case.

[1]  Fabrice Rossi,et al.  Functional multi-layer perceptron: a non-linear tool for functional data analysis , 2007, Neural Networks.

[2]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[3]  A. Veneziani,et al.  A Case Study in Exploratory Functional Data Analysis: Geometrical Features of the Internal Carotid Artery , 2009 .

[4]  Henry W. Altland,et al.  Applied Functional Data Analysis , 2003, Technometrics.

[5]  Shuliang Wang,et al.  Data Mining and Knowledge Discovery , 2005, Mathematical Principles of the Internet.

[6]  B. Chan,et al.  Archetypal analysis of galaxy spectra , 2003, astro-ph/0301491.

[7]  Frédéric Ferraty,et al.  Curves discrimination: a nonparametric functional approach , 2003, Comput. Stat. Data Anal..

[8]  James O. Ramsay,et al.  Functional Data Analysis , 2005 .

[9]  Morten Mørup,et al.  Archetypal analysis of diverse Pseudomonas aeruginosa transcriptomes reveals adaptation in cystic fibrosis airways , 2013, BMC Bioinformatics.

[10]  Åke Björck,et al.  Least Squares Problems , 2009, Encyclopedia of Optimization.

[11]  Christian Bauckhage,et al.  Descriptive matrix factorization for sustainability Adopting the principle of opposites , 2011, Data Mining and Knowledge Discovery.

[12]  Tughrul Arslan,et al.  2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN) , 2018 .

[13]  Christian Seiler,et al.  Archetypal Scientists , 2012, J. Informetrics.

[14]  Tyler Davis,et al.  Memory for Category Information Is Idealized Through Contrast With Competing Options , 2010, Psychological science.

[15]  Upmanu Lall,et al.  Daily Precipitation and Tropical Moisture Exports across the Eastern United States: An Application of Archetypal Analysis to Identify Spatiotemporal Structure , 2015 .

[16]  Stavros Valsamidis,et al.  Courseware usage archetyping , 2013, PCI '13.

[17]  Emily Stone Exploring archetypal dynamics of pattern formation in cellular flames , 2002 .

[18]  Lars Kai Hansen,et al.  Archetypal analysis for machine learning , 2010, 2010 IEEE International Workshop on Machine Learning for Signal Processing.

[19]  Manuel J. A. Eugster,et al.  Performance Profiles based on Archetypal Athletes , 2012 .

[20]  Manuel J. A. Eugster,et al.  From Spider-man to Hero - archetypal analysis in R , 2009 .

[21]  C. Ji An Archetypal Analysis on , 2005 .

[22]  Igor Kononenko,et al.  Multi-document summarization via Archetypal Analysis of the content-graph joint model , 2013, Knowledge and Information Systems.

[23]  M. D. Martínez-Miranda,et al.  Computational Statistics and Data Analysis , 2009 .

[24]  Julien Jacques,et al.  Model-based clustering for multivariate functional data , 2013, Comput. Stat. Data Anal..

[25]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[26]  Richard T. Carson,et al.  Archetypal analysis: a new way to segment markets based on extreme individuals , 2003 .

[27]  Chad M. Schafer,et al.  Prototype selection for parameter estimation in complex models , 2011, 1105.6344.

[28]  Irene Epifanio,et al.  Functional Data Analysis in Shape Analysis , 2011 .

[29]  John A. Rice,et al.  Displaying the important features of large collections of similar curves , 1992 .

[30]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[31]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[32]  Giancarlo Ragozini,et al.  Interval Archetypes: A New Tool for Interval Data Analysis , 2012, Stat. Anal. Data Min..

[33]  Spencer Graves,et al.  Functional Data Analysis with R and MATLAB , 2009 .

[34]  Chunhui Zhao,et al.  Multiple endmembers based unmixing using Archetypal Analysis , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[35]  Sandra Alemany,et al.  Archetypoids: A new approach to define representative archetypal data , 2015, Comput. Stat. Data Anal..

[36]  Guillermo Vinué,et al.  Anthropometry: An R Package for Analysis of Anthropometric Data , 2017 .

[37]  P. Vieu,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[38]  Giancarlo Ragozini,et al.  On the use of archetypes as benchmarks , 2008 .

[39]  Manuel J. A. Eugster,et al.  Weighted and robust archetypal analysis , 2011, Comput. Stat. Data Anal..

[40]  Bertrand Michel,et al.  Grouped variable importance with random forests and application to multiple functional data analysis , 2014, Comput. Stat. Data Anal..

[41]  Ana-Maria Staicu,et al.  Interaction models for functional regression , 2016, Comput. Stat. Data Anal..

[42]  David F. Midgley,et al.  Marketing strategy in MNC subsidiaries: pure versus hybrid archetypes , 2013 .

[43]  Bo Markussen,et al.  Approximate inference for spatial functional data on massively parallel processors , 2014, Comput. Stat. Data Anal..

[44]  Sebastian Feld,et al.  Archetypes of alternative routes in buildings , 2015, 2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[45]  Frédéric Ferraty,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[46]  J. Gerring A case study , 2011, Technology and Society.

[47]  Christian Bauckhage,et al.  Archetypal Images in Large Photo Collections , 2009, 2009 IEEE International Conference on Semantic Computing.

[48]  Lefteris Angelis,et al.  A novel single-trial methodology for studying brain response variability based on archetypal analysis , 2015, Expert Syst. Appl..

[49]  Irene Epifanio,et al.  Hippocampal shape analysis in Alzheimer's disease using functional data analysis , 2014, Statistics in medicine.

[50]  Igor Kononenko,et al.  Weighted archetypal analysis of the multi-element graph for query-focused multi-document summarization , 2014, Expert Syst. Appl..

[51]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[52]  Sandra Alemany,et al.  Archetypal analysis: Contributions for estimating boundary cases in multivariate accommodation problem , 2013, Comput. Ind. Eng..