Algorithm 913: An elegant IDR(s) variant that efficiently exploits biorthogonality properties
暂无分享,去创建一个
[1] Gerard L. G. Sleijpen,et al. Maintaining convergence properties of BiCGstab methods in finite precision arithmetic , 1995, Numerical Algorithms.
[2] Shao-Liang Zhang,et al. GPBi-CG: Generalized Product-type Methods Based on Bi-CG for Solving Nonsymmetric Linear Systems , 1997, SIAM J. Sci. Comput..
[3] Howard C. Elman,et al. Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.
[4] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[5] Howard C. Elman,et al. Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .
[6] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[7] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[8] Martin H. Gutknecht,et al. Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..
[9] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[10] Martin B. van Gijzen,et al. The IDR(s) method for solving nonsymmetric systems : a performance study for CFD problems (High Performance Algorithms for Computational Science and Their Applications) , 2008 .
[11] P. Sonneveld,et al. IDR(s): A family of simple and fast algorithms for solving large nonsymmetric linear systems , 2007 .
[12] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[13] Valeria Simoncini,et al. Interpreting IDR as a Petrov--Galerkin Method , 2010, SIAM J. Sci. Comput..
[14] Martin H. Gutknecht,et al. Eigenvalue computations based on IDR , 2013 .
[15] Yusuke ONOUE,et al. IDR ( s ) 法の簡便な前処理と重厚な前処理の違いについて A Difference between Easy and Profound Preconditionings of IDR ( s ) Method 尾上勇介 , 2008 .
[16] G. Golub,et al. Gmres: a Generalized Minimum Residual Algorithm for Solving , 2022 .
[17] Martin B. van Gijzen,et al. IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations , 2008, SIAM J. Sci. Comput..
[18] Tony F. Chan,et al. ML(k)BiCGSTAB: A BiCGSTAB Variant Based on Multiple Lanczos Starting Vectors , 1999, SIAM J. Sci. Comput..
[19] Gerard L. G. Sleijpen,et al. Bi-CGSTAB as an induced dimension reduction method , 2010 .
[20] Peter Sonneveld,et al. On the convergence behaviour of IDR(s) , 2010 .
[21] P. Wesseling,et al. Numerical experiments with a multiple grid and a preconditioned Lanczos type method , 1980 .
[22] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[23] Seiji Fujino,et al. An Overview of A Family of New Iterative Methods Based on IDR Theorem And Its Estimation , 2009 .
[24] D. R. Fokkema,et al. BiCGstab(ell) for Linear Equations involving Unsymmetric Matrices with Complex Spectrum , 1993 .
[25] M. Gutknecht. IDR Explained , 2008 .
[26] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .