Post-polymerization functionalization of polyolefins.

Polyolefins are macromolecular alkanes and include the most familiar and most commercially produced plastic, polyethylene. The low cost of these materials combined with their diverse and desirable property profiles drive such large-scale production. One property that renders polyolefins so attractive is their resistance to harsh chemical environments. However, this attribute becomes a severe limitation when attempting to chemically convert these plastics into value-added materials. Functionalization of polymers is a useful methodology for the generation of new materials with wide ranging applications, and this tutorial review describes both new and established methods for the post-polymerization modification of polyolefins.

[1]  O. Babot,et al.  Chemical modification of molten polypropylene by thermolysis of peroxidic compounds , 2003 .

[2]  M. Hillmyer,et al.  Selective and Mild Oxyfunctionalization of Model Polyolefins , 2003 .

[3]  R. Mülhaupt Catalytic polymerization and post polymerization catalysis fifty years after the discovery of Ziegler's catalysts , 2003 .

[4]  B. Maillard,et al.  Chemical modification of molten polyethylene by thermal decomposition of peroxyesters , 2003 .

[5]  H. Davies Catalytic asymmetric CH activation of sp3 hybridized CH bonds by means of carbenoid CH insertions: applications in organic synthesis , 2002 .

[6]  S. Bateman,et al.  Sulfonyl azides—an alternative route to polyolefin modification , 2002 .

[7]  Nicole L. Wagner,et al.  Rhodium-catalyzed, regiospecific functionalization of polyolefins in the melt. , 2002, Journal of the American Chemical Society.

[8]  Marie Degueil,et al.  Chemical modification of molten polyethylene by thermolysis of peroxyketals , 2001 .

[9]  U. Gedde,et al.  Properties of polyketone/polypropylene blends , 2001 .

[10]  D. A. Hucul,et al.  Catalytic Hydrogenation of Polystyrene , 2000 .

[11]  C. Che,et al.  Amidation of saturated C-H bonds catalyzed by electron-deficient ruthenium and manganese porphyrins. A highly catalytic nitrogen atom transfer process. , 2000, Organic letters.

[12]  B. Novak,et al.  Copolymerization of polar monomers with olefins using transition-metal complexes. , 2000, Chemical reviews.

[13]  Hartwig,et al.  Thermal, catalytic, regiospecific functionalization of alkanes , 2000, Science.

[14]  Friedrich,et al.  Neutral, single-component nickel (II) polyolefin catalysts that tolerate heteroatoms , 2000, Science.

[15]  F. Stedile,et al.  Polypropylene functionalization with vinyltriethoxysilane , 1999 .

[16]  J. Seppälä,et al.  Functionalization of polyolefins and elastomers with an oxazoline compound , 1999 .

[17]  Fu-Hong Liu,et al.  Dehydrogenation of n-alkanes catalyzed by iridium 'pincer' complexes: Regioselective formation of α-olefins , 1999 .

[18]  J. Seppälä,et al.  Use of oxazoline functionalized polyolefins and elastomers as compatibilizers for thermoplastic blends , 1998 .

[19]  J. Bercaw,et al.  Homogeneous Oxidation of Alkanes by Electrophilic Late Transition Metals. , 1998, Angewandte Chemie.

[20]  N. Reichelt,et al.  Challenges in polypropylene by chemical modification , 1998 .

[21]  S. Wasserman,et al.  Oxidation behavior and stabilization of metallocene and other polyolefins , 1997 .

[22]  R. Neumann,et al.  Hydroxylation of Alkanes with Molecular Oxygen Catalyzed by a New Ruthenium‐Substituted Polyoxometalate, [WZnRu 2III(OH)(H2O)(ZnW9O34)2]11− , 1995 .

[23]  Erik D. Sall,et al.  Functionalization of Polymers by Metal-Mediated Processes , 1995 .

[24]  J. Iqbal,et al.  Cobalt(II)-porphyrin catalyzed selective functionalization of alkanes with sulfurylchloride: A remarkable substituent effect , 1994 .

[25]  D. R. Paul,et al.  Morphology development in toughened aliphatic polyamides , 1994 .

[26]  B. Meunier,et al.  Oxygenation of hydrocarbons by KHSO5 catalyzed by manganese porphyrin complexes , 1989 .

[27]  G. Ruggeri,et al.  Polyolefin functionalization by carbene insertion for polymer blends , 1989 .

[28]  G. Ruggeri,et al.  Functionalization of polyolefins: structure of functional groups in polyethylene reacted with ethyl diazoacetate , 1989 .

[29]  S. Turner,et al.  Recent advances in the chemical modification of unsaturated polymers , 1982 .

[30]  D. A. Olsen,et al.  Difluorocarbene modification of polymer and fiber surfaces , 1969 .

[31]  D. A. Olsen,et al.  Incorporation of Functional Groups onto the Surface of Polyethylene , 1969, Nature.

[32]  G. A. Mcfarren,et al.  Azidosilane polymer—filler coupling agent , 1977 .