THE CIRCULAR POLARIZATION OF SAGITTARIUS A* AT SUBMILLIMETER WAVELENGTHS

We report the first detections of circularly polarized emission at submillimeter wavelengths from the compact radio source and supermassive black hole candidate Sgr A* at a level of 1.2% ± 0.3% at 1.3 mm wavelength (230 GHz) and 1.6% ± 0.3% at 860 μm (345 GHz) with the same handedness, left circular polarization (LCP), as observed at all lower frequencies (1.4–15 GHz). The observations, taken with the Submillimeter Array in multiple epochs, also show simultaneous linear polarization (LP) at both wavelengths of about 6%. These properties differ sharply from those at wavelengths longer than 1 cm (frequencies below 30 GHz), where weak circular polarization (CP) (∼0.5%) dominates over LP, which is not detected at similar fractional limits. We describe an extensive set of tests to ensure the accuracy of our measurements. We find no CP in any other source, including the bright quasar 1924-292, which traces the same path on the sky as Sgr A* and therefore should be subject to identical systematic errors originating in the instrument frame. Since a relativistic synchrotron plasma is expected to produce little CP, the observed CP is probably generated close to the event horizon by the Faraday conversion process. We use a simple approximation to show that the phase shift associated with Faraday conversion can be nearly independent of frequency, a sufficient condition to make the handedness of CP independent of frequency. Because the size of the τ = 1 surface changes by more than an order of magnitude between 1.4 and 345 GHz, the magnetic field must be coherent over such scales to consistently produce LCP. To improve our understanding of the environment of SgrA* critical future measurements includes determining whether the Faraday rotation deviates from a λ2 dependence in wavelength and whether the circular and linear components of the flux density are correlated.

[1]  R. Penna,et al.  SAGITTARIUS A* ACCRETION FLOW AND BLACK HOLE PARAMETERS FROM GENERAL RELATIVISTIC DYNAMICAL AND POLARIZED RADIATIVE MODELING , 2010, 1007.4832.

[2]  M. Voit,et al.  RADIATIVE PROCESSES , 2012 .

[3]  A. Loeb,et al.  CONSTRAINING THE STRUCTURE OF SAGITTARIUS A*'s ACCRETION FLOW WITH MILLIMETER VERY LONG BASELINE INTERFEROMETRY CLOSURE PHASES , 2011, 1106.2550.

[4]  M. Wright,et al.  1.3 mm WAVELENGTH VLBI OF SAGITTARIUS A*: DETECTION OF TIME-VARIABLE EMISSION ON EVENT HORIZON SCALES , 2010, 1011.2472.

[5]  Lei Huang,et al.  General relativistic polarized radiative transfer: building a dynamics–observations interface , 2010, 1007.4831.

[6]  Stephen R. Green,et al.  Numerical parameter survey of non‐radiative black hole accretion: flow structure and variability of the rotation measure , 2010, 1011.5498.

[7]  J. A. Zensus,et al.  Coordinated NIR/mm observations of flare emission from Sagittarius A* , 2010, 1008.1560.

[8]  Dipankar Maitra,et al.  A time-dependent jet model for the emission from Sagittarius A* , 2009 .

[9]  P. K. Leung,et al.  RADIATIVE MODELS OF SGR A* FROM GRMHD SIMULATIONS , 2009, 0909.5431.

[10]  Zhi-qiang Shen,et al.  TESTING THE ACCRETION FLOW WITH PLASMA WAVE HEATING MECHANISM FOR SAGITTARIUS A* BY THE 1.3 mm VLBI MEASUREMENTS , 2009, 0909.3687.

[11]  E. Agol,et al.  MILLIMETER FLARES AND VLBI VISIBILITIES FROM RELATIVISTIC SIMULATIONS OF MAGNETIZED ACCRETION ONTO THE GALACTIC CENTER BLACK HOLE , 2009, 0909.0267.

[12]  POLARIZED EMISSION OF SAGITTARIUS A , 2009, 0907.5463.

[13]  U. Michigan,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 FULL POLARIZATION SPECTRA OF 3C 279 , 2022 .

[14]  Dwingeloo,et al.  Jet-lag in Sagittarius A*: what size and timing measurements tell us about the central black hole in the Milky Way , 2009, 0901.3723.

[15]  R. Genzel,et al.  MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.

[16]  A. Niell,et al.  Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre , 2008, Nature.

[17]  R. Shcherbakov Propagation Effects in Magnetized Transrelativistic Plasmas , 2008, 0809.0012.

[18]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[19]  Chris L. Fryer,et al.  Linearly and circularly polarized emission in Sagittarius A , 2008, 0802.3561.

[20]  W. Cotton,et al.  Simultaneous Chandra, CSO, and VLA Observations of Sgr A*: The Nature of Flaring Activity , 2007, 0712.2882.

[21]  J. M. Moran,et al.  An X-Ray, Infrared, and Submillimeter Flare of Sagittarius A* , 2007, 0712.2877.

[22]  E. Quataert,et al.  Faraday Rotation in Global Accretion Disk Simulations: Implications for Sgr A* , 2007, 0706.3715.

[23]  D. Astronomy,et al.  Constraining Radiatively Inefficient Accretion Flows with Polarization , 2007, 0705.2590.

[24]  Dwingeloo,et al.  How to hide large-scale outflows: size constraints on the jets of Sgr A* , 2007, astro-ph/0702637.

[25]  J. Moran,et al.  To appear in the Astrophysical Journal Letters Preprint typeset using L ATEX style emulateapj v. 10/09/06 AN UNAMBIGUOUS DETECTION OF FARADAY ROTATION IN SAGITTARIUS A* , 2006 .

[26]  Zhi-qiang Shen High-Resolution Millimeter-VLBI Imaging of Sgr A* , 2006, astro-ph/0611613.

[27]  H. Falcke,et al.  The Intrinsic Size of Sagittarius A* from 0.35 to 6 cm , 2006, astro-ph/0608004.

[28]  Astrophysics,et al.  The Submillimeter Polarization of Sgr A , 2006, astro-ph/0607432.

[29]  H. Falcke,et al.  The Rotation Measure and 3.5 Millimeter Polarization of Sagittarius A* , 2006, astro-ph/0606381.

[30]  J. M. Moran,et al.  Interferometric Measurements of Variable 340 GHz Linear Polarization in Sagittarius A* , 2005, astro-ph/0511653.

[31]  H. Falcke,et al.  The Rotation Measure and 3.5 Mm Polarization of Sgr A , 2006 .

[32]  W. Goss,et al.  Simultaneous Multiwavelength Observations of Sagittarius A* , 2005, astro-ph/0503527.

[33]  H. Falcke,et al.  Variable Linear Polarization from Sagittarius A*: Evidence of a Hot Turbulent Accretion Flow , 2004, astro-ph/0411551.

[34]  T. Beckert Circular Polarization and Magnetic Fields in Jet Models , 2003 .

[35]  A. Miyazaki,et al.  Search for Circular Polarization toward Sagittarius A* at 100 GHz , 2003 .

[36]  J. Wardle,et al.  Theoretical Models for Producing Circularly Polarized Radiation in Extragalactic Radio Sources , 2003, astro-ph/0305136.

[37]  Ramesh Narayan,et al.  Nonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A* , 2003, astro-ph/0304125.

[38]  Geoffrey C. Bower,et al.  Interferometric Detection of Linear Polarization from Sagittarius A* at 230 GHz , 2003, astro-ph/0302227.

[39]  H. Falcke,et al.  Accepted for publication in the Astrophysical Journal The Spectrum and Variability of Circular Polarization in , 2002 .

[40]  H. Falcke,et al.  A Jet-ADAF model for Sgr A* , 2001, astro-ph/0112464.

[41]  H. Falcke,et al.  Circular polarization of radio emission from relativistic jets , 2001, astro-ph/0112398.

[42]  M. Begelman,et al.  Circular Polarization from Stochastic Synchrotron Sources , 2001, astro-ph/0112090.

[43]  H. Falcke,et al.  The Nature of the 10 kilosecond X-ray flare in Sgr A* , 2001, astro-ph/0109081.

[44]  H. Falcke,et al.  BIMA Observations of Linear Polarization in Sagittarius A* at 112 GHz , 2001, astro-ph/0106146.

[45]  Robert Coker,et al.  A Magnetic Dynamo Origin for the Submillimeter Excess in Sagittarius A* , 2000, astro-ph/0008416.

[46]  Holland,et al.  Detection of Polarized Millimeter and Submillimeter Emission from Sagittarius A* , 2000, The Astrophysical journal.

[47]  E. Quataert,et al.  Convection-dominated Accretion Flows , 1999, astro-ph/9912440.

[48]  J. Wardle,et al.  Detection and Measurement of Parsec-Scale Circular Polarization in Four AGNs , 1999, astro-ph/0007396.

[49]  R. Sault,et al.  Confirmation and Analysis of Circular Polarization from Sagittarius A* , 1999, The Astrophysical journal.

[50]  H. Falcke,et al.  The Linear Polarization of Sagittarius A*. II. VLA and BIMA Polarimetry at 22, 43, and 86 GHz , 1999, astro-ph/9907282.

[51]  H. Falcke,et al.  Detection of Circular Polarization in the Galactic Center Black Hole Candidate Sagittarius A* , 1999, astro-ph/9907215.

[52]  H. Falcke,et al.  The Linear Polarization of Sagittarius A*. I. VLA Spectropolarimetry at 4.8 and 8.4 GHz , 1999, astro-ph/9904091.

[53]  Roger D. Blandford,et al.  On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.

[54]  Ju l 2 00 0 Detection and Measurement of Parsec-Scale Circular Polarization in Four AGN , 1999 .

[55]  James M. Moran,et al.  The Submillimeter Array , 2004, Astronomical Telescopes and Instrumentation.

[56]  D. Melrose,et al.  Propagation-induced Circular Polarisation in Synchrotron Sources , 1998, Publications of the Astronomical Society of Australia.

[57]  D. Melrose The response tensor for a highly relativistic magnetized thermal plasma , 1997, Journal of Plasma Physics.

[58]  Jonathan E. Grindlay,et al.  Advection-dominated Accretion Model of Sagittarius A*: Evidence for a Black Hole at the Galactic Center , 1997, astro-ph/9706112.

[59]  R. Narayan,et al.  Harmony in Electrons: Cyclotron and Synchrotron Emission by Thermal Electrons in a Magnetic Field , 1996, astro-ph/9601073.

[60]  R. Narayan,et al.  Advection-dominated Accretion: A Self-similar Solution , 1994, astro-ph/9403052.

[61]  S. Odell,et al.  Transfer of polarized radiation in self-absorbed synchrotron sources. I - Results for a homogeneous source. [astrophysics , 1977 .

[62]  J. Roberts,et al.  Radio Astrophysics : Nonthermal Processes in Galactic and Extragalactic Sources , 1970 .