Exponential Rosenbrock-Type Methods

We introduce a new class of exponential integrators for the numerical integration of large-scale systems of stiff differential equations. These so-called Rosenbrock-type methods linearize the flow in each time step and make use of the matrix exponential and related functions of the Jacobian. In contrast to standard integrators, the methods are fully explicit and do not require the numerical solution of linear systems. We analyze the convergence properties of these integrators in a semigroup framework of semilinear evolution equations in Banach spaces. In particular, we derive an abstract stability and convergence result for variable step sizes. This analysis further provides the required order conditions and thus allows us to construct pairs of embedded methods. We present a third-order method with two stages, and a fourth-order method with three stages, respectively. The application of the required matrix functions to vectors are computed by Krylov subspace approximations. We briefly discuss these implementation issues, and we give numerical examples that demonstrate the efficiency of the new integrators.

[1]  B. A. Schmitt,et al.  ROWMAP—a ROW-code with Krylov techniques for large stiff ODEs , 1997 .

[2]  S. Krogstad Generalized integrating factor methods for stiff PDEs , 2005 .

[3]  C. Lubich,et al.  Runge-Kutta approximation of quasi-linear parabolic equations , 1995 .

[4]  J. D. Lawson Generalized Runge-Kutta Processes for Stable Systems with Large Lipschitz Constants , 1967 .

[5]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[6]  L. Bergamaschi,et al.  Interpolating discrete advection-diffusion propagators at Leja sequences , 2004 .

[7]  Marlis Hochbruck,et al.  Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..

[8]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[9]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[10]  W. M. Lioen,et al.  Test set for IVP solvers , 1996 .

[11]  R. Weiner,et al.  B-convergence results for linearly implicit one step methods , 1987 .

[12]  L. Shampine,et al.  RKC: an explicit solver for parabolic PDEs , 1998 .

[13]  Mayya Tokman,et al.  Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods , 2006, J. Comput. Phys..

[14]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[15]  Mari Paz Calvo,et al.  A class of explicit multistep exponential integrators for semilinear problems , 2006, Numerische Mathematik.

[16]  Marlis Hochbruck,et al.  Approximation of matrix operators applied to multiple vectors , 2008, Math. Comput. Simul..

[17]  A. Friedli Verallgemeinerte Runge-Kutta Verfahren zur Loesung steifer Differentialgleichungssysteme , 1978 .

[18]  C. Lubich,et al.  Linearly implicit time discretization of non-linear parabolic equations , 1995 .

[19]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[20]  Alexander Ostermann,et al.  Convergence of Runge-Kutta methods for nonlinear parabolic equations , 2002 .

[21]  Vladimir Druskin,et al.  Krylov subspace approximation of eigenpairs and matrix functions in exact and computer arithmetic , 1995, Numer. Linear Algebra Appl..

[22]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[23]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[24]  A. Ostermann,et al.  Implementation of exponential Rosenbrock-type integrators , 2009 .

[25]  G. D. Byrne,et al.  VODE: a variable-coefficient ODE solver , 1989 .

[26]  A. Ostermann,et al.  A Class of Explicit Exponential General Linear Methods , 2006 .

[27]  Marlis Hochbruck,et al.  Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..