PFAAM An Active Appearance Model based Particle Filter for both Robust and Precise Tracking

Model based tracking is one key component of many systems today, e.g. within video surveillance or human computer interfaces (HCI). Our approach consists of a combination of particle filters (PFs) and active appearance models (AAMs): the PFAAM. It combines the robustness of PFs with the precision of AAMs. Experimental results are given. PFAAM shows superior perfomance compared to both standard AAMs and PFs using AAMs as cues only, i.e. without using a local optimization loop.

[1]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[2]  Bjarne K. Ersbøll,et al.  FAME-a flexible appearance modeling environment , 2003, IEEE Transactions on Medical Imaging.

[3]  Michael Isard,et al.  Active Contours , 2000, Springer London.

[4]  Franck Davoine,et al.  Facial action tracking using particle filters and active appearance models , 2005, sOc-EUSAI '05.

[5]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[6]  Hildur Ólafsdóttir,et al.  Automatic Assessment of Cardiac Perfusion MRI , 2004, MICCAI.

[7]  Bernt Schiele,et al.  Towards robust multi-cue integration for visual tracking , 2001, Machine Vision and Applications.

[8]  John MacCormick Stochastic algorithms for visual tracking: probabilistic modelling and stochastic algorithms for visual localisation and tracking , 2000 .

[9]  Frank Dellaert,et al.  A Rao-Blackwellized particle filter for EigenTracking , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[10]  Mikkel B. Stegmann,et al.  Object tracking using active appearance models , 2001 .

[11]  Luc Van Gool,et al.  An adaptive color-based particle filter , 2003, Image Vis. Comput..

[12]  Rama Chellappa,et al.  Visual tracking and recognition using appearance-adaptive models in particle filters , 2004, IEEE Transactions on Image Processing.

[13]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[14]  Fourth Canadian Conference on Computer and Robot Vision (CRV 2007), 28-30 May 2007, Montreal, Quebec, Canada , 2007, CRV.

[15]  Timothy F. Cootes,et al.  Extraction of Visual Features for Lipreading , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.