Linear Models for Microarray Data Analysis: Hidden Similarities and Differences

In the past several years many linear models have been proposed for analyzing two-color microarray data. As presented in the literature, many of these models appear dramatically different. However, many of these models are reformulations of the same basic approach to analyzing microarray data. This paper demonstrates the equivalence of some of these models. Attention is directed at choices in microarray data analysis that have a larger impact on the results than the choice of linear model.

[1]  John Quackenbush Microarray data normalization and transformation , 2002, Nature Genetics.

[2]  Pierre R. Bushel,et al.  STATISTICAL ANALYSIS OF A GENE EXPRESSION MICROARRAY EXPERIMENT WITH REPLICATION , 2002 .

[3]  Pierre R. Bushel,et al.  Assessing Gene Significance from cDNA Microarray Expression Data via Mixed Models , 2001, J. Comput. Biol..

[4]  Hao Wu,et al.  MAANOVA: A Software Package for the Analysis of Spotted cDNA Microarray Experiments , 2003 .

[5]  S. Dudoit,et al.  Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. , 2002, Nucleic acids research.

[6]  G. Churchill,et al.  Experimental design for gene expression microarrays. , 2001, Biostatistics.

[7]  X. Cui,et al.  Transformations for cDNA Microarray Data , 2003, Statistical applications in genetics and molecular biology.

[8]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[9]  S. Dudoit,et al.  Microarray expression profiling identifies genes with altered expression in HDL-deficient mice. , 2000, Genome research.

[10]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[11]  Ingrid Lönnstedt Replicated microarray data , 2001 .

[12]  John D. Storey,et al.  Empirical Bayes Analysis of a Microarray Experiment , 2001 .

[13]  G. Churchill Fundamentals of experimental design for cDNA microarrays , 2002, Nature Genetics.

[14]  T. Speed,et al.  Design issues for cDNA microarray experiments , 2002, Nature Reviews Genetics.

[15]  G A Whitmore,et al.  Models for microarray gene expression data , 2002, Journal of biopharmaceutical statistics.

[16]  Russell D. Wolfinger,et al.  The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster , 2001, Nature Genetics.

[17]  J. L. Myers Fundamentals of Experimental Design , 1972 .

[18]  Gary A. Churchill,et al.  Sources of Variation in Microarray Experiments , 2003 .

[19]  Raymond J Carroll,et al.  DNA Microarray Experiments: Biological and Technological Aspects , 2002, Biometrics.

[20]  Gary A. Churchill,et al.  Analysis of Variance for Gene Expression Microarray Data , 2000, J. Comput. Biol..

[21]  M Kathleen Kerr,et al.  Design considerations for efficient and effective microarray studies. , 2003, Biometrics.

[22]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Roger E Bumgarner,et al.  Large-scale monitoring of host cell gene expression during HIV-1 infection using cDNA microarrays. , 2000, Virology.