Rapid Calculation of Theoretical Cosmic Microwave Background Angular Power Spectra

We have developed a fast method for predicting the angular power spectrum Cl of the cosmic microwave background given cosmological parameters and a primordial power spectrum of perturbations. After precomputing the radiation temperature and gravitational potential transfer functions over a small subspace of the total model parameter space, the rest of the model space (six or more cosmological parameters and arbitrarily many primordial power spectrum parameters) is reached via rapid analytic and semianalytic approximations that are highly accurate on all angular scales for which linear perturbation theory applies. A single power spectrum can be calculated in ~1 s on a desktop computer. We discuss applications to cosmological parameter estimation.

[1]  Yun Wang,et al.  Model-independent Primordial Power Spectrum from MAXIMA, BOOMERANG, and DASI Data , 2000, astro-ph/0011351.

[2]  David N. Spergel,et al.  LARGE-ANGLE COSMIC MICROWAVE BACKGROUND ANISOTROPIES IN AN OPEN UNIVERSE , 1994 .

[3]  N. Christensen,et al.  Bayesian methods for cosmological parameter estimation from cosmic microwave background measurements , 2000, astro-ph/0103134.

[4]  L. F. Abbott,et al.  A General, Gauge Invariant Analysis of the Cosmic Microwave Anisotropy , 1986 .

[5]  J. Bardeen,et al.  Gauge Invariant Cosmological Perturbations , 1980 .

[6]  William H. Press,et al.  The Cosmological constant , 1992 .

[7]  Adrian T. Lee,et al.  A High Spatial Resolution Analysis of the MAXIMA-1 Cosmic Microwave Background Anisotropy Data , 2001, astro-ph/0104459.

[8]  S. Dodelson,et al.  Impact of Inhomogeneous Reionization on Cosmic Microwave Background Anisotropy , 1998, astro-ph/9805012.

[9]  A. Hu,et al.  Secondary Cosmic Microwave Background Anisotropies in a Universe Reionized in Patches , 1998, astro-ph/9803188.

[10]  Why not consider closed universes , 1995, astro-ph/9508157.

[11]  J. Silk,et al.  On Breaking Cosmic Degeneracy , 1997, astro-ph/9710364.

[12]  Martin White,et al.  The Damping Tail of Cosmic Microwave Background Anisotropies , 1997 .

[13]  Matias Zaldarriaga Polarization of the microwave background in reionized models , 1997 .

[14]  A. Melchiorri,et al.  A Measurement by BOOMERANG of Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background , 2001, astro-ph/0104460.

[15]  J. Carlstrom,et al.  Cosmological Parameter Extraction from the First Season of Observations with the Degree Angular Scale Interferometer , 2002 .

[16]  Is cosmology consistent , 2001, astro-ph/0105091.

[17]  Robert H. Becker,et al.  Evolution of the ionizing background and the epoch of reionization from the spectra of z ∼ 6 quasars , 2001 .

[18]  Matias Zaldarriaga,et al.  Current Cosmological Constraints from a 10 Parameter Cosmic Microwave Background Analysis , 2000, astro-ph/0002091.

[19]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[20]  Anisotropies in the cosmic microwave background : an analytic approach , 1994, astro-ph/9407093.

[22]  Alexander S. Szalay,et al.  Evidence for Reionization at z ∼ 6: Detection of a Gunn-Peterson Trough in a z = 6.28 Quasar , 2001, astro-ph/0108097.

[23]  Chung-Pei Ma,et al.  Nonlinear kinetic Sunyaev-Zeldovich effect. , 2001, Physical review letters.

[24]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[25]  Cosmological Parameter Extraction from the First Season of Observations with DASI , 2001, astro-ph/0104490.

[26]  A. Jaffe,et al.  Calculation of the Ostriker-Vishniac effect in cold dark matter models , 1998, astro-ph/9801022.

[27]  Edmund Bertschinger,et al.  Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges , 1995 .

[28]  The Damping Tail of CMB Anisotropies , 1996, astro-ph/9609079.

[29]  Jeremiah P. Ostriker,et al.  Generation of microwave background fluctuations from nonlinear perturbations at the era of galaxy formation , 1986 .

[30]  Dark energy and cosmic microwave background bispectrum , 2001, astro-ph/0108179.

[31]  J. R. Bond,et al.  Cosmic confusion: degeneracies among cosmological parameters derived from measurements of microwave background anisotropies , 1998 .

[32]  L. Knox,et al.  The Age of the Universe and the Cosmological Constant Determined from Cosmic Microwave Background Anisotropy Measurements , 2001 .

[33]  M. White,et al.  Hydrodynamic Simulations of the Sunyaev-Zeldovich Effect(s) , 2000, astro-ph/0008133.

[34]  Abraham Loeb,et al.  The Reionization of the Universe by the First Stars and Quasars , 2001 .

[35]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[36]  D. J. Fixsen,et al.  The Cosmic Microwave Background spectrum from the full COBE FIRAS data set , 1996 .

[37]  J. R. Bond,et al.  Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter , 1984 .

[38]  D. Heath The growth of density perturbations in zero pressure Friedmann–Lemaître universes , 1977 .

[39]  October I Physical Review Letters , 2022 .

[40]  Integral solution for the microwave background anisotropies in nonflat universes , 1997, astro-ph/9704265.