REACH: Robotic Equipment for Automated Crystal Harvesting using a six-axis robot arm and a micro-gripper.

In protein crystallography experiments, only two critical steps remain manual: the transfer of crystals from their original crystallization drop into the cryoprotection solution followed by flash-cooling. These steps are risky and tedious, requiring a high degree of manual dexterity. These limiting steps are a real bottleneck to high-throughput crystallography and limit the remote use of protein crystallography core facilities. To eliminate this limit, the Robotic Equipment for Automated Crystal Harvesting (REACH) was developed. This robotized system, equipped with a two-finger micro-gripping device, allows crystal harvesting, cryoprotection and flash-cooling. Using this setup, harvesting experiments were performed on several crystals, followed by direct data collection using the same robot arm as a goniometer. Analysis of the diffraction data demonstrates that REACH is highly reliable and efficient and does not alter crystallographic data. This new instrument fills the gap in the high-throughput crystallographic pipeline.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  M. J. Adams Preparation and Analysis of Protein Crystals , 1983 .

[3]  T. Teng,et al.  Mounting of crystals for macromolecular crystallography in a free-standing thin film , 1990 .

[4]  S. Parkin,et al.  Macromolecular Cryocrystallography: Cooling, Mounting, Storage and Transportation of Crystals , 1998 .

[5]  G Bricogne,et al.  Can anomalous signal of sulfur become a tool for solving protein crystal structures? , 1999, Journal of molecular biology.

[6]  J L Ferrer,et al.  Automated data processing on beamline FIP (BM30A) at ESRF. , 2001, Acta crystallographica. Section D, Biological crystallography.

[7]  Hideki Tanaka Hydrogen bonds between water molecules: thermal expansivity of ice and water , 2001 .

[8]  E. Fanchon,et al.  FIP: a highly automated beamline for multiwavelength anomalous diffraction experiments. , 2002, Acta crystallographica. Section D, Biological crystallography.

[9]  S. Kriminski,et al.  Flash-cooling and annealing of protein crystals. , 2002, Acta crystallographica. Section D, Biological crystallography.

[10]  Hui Li,et al.  Automation of protein purification for structural genomics , 2004, Journal of Structural and Functional Genomics.

[11]  K. Tanie,et al.  Automated micro manipulation system with protein crystal , 2004, Micro-Nanomechatronics and Human Science, 2004 and The Fourth Symposium Micro-Nanomechatronics for Information-Based Society, 2004..

[12]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[13]  Peter K. Allen,et al.  Visually-guided protein crystal manipulation using micromachined silicon tools , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[14]  Philippe Carpentier,et al.  Automated analysis of vapor diffusion crystallization drops with an X-ray beam. , 2004, Structure.

[15]  J. Fontecilla-Camps,et al.  Crystallographic and spectroscopic evidence for high affinity binding of FeEDTA(H2O)- to the periplasmic nickel transporter NikA. , 2005, Journal of the American Chemical Society.

[16]  Jochen Mueller-Dieckmann,et al.  The open-access high-throughput crystallization facility at EMBL Hamburg. , 2006, Acta crystallographica. Section D, Biological crystallography.

[17]  John F. Hunt,et al.  Automated streak-seeding with micromachined silicon tools. , 2006, Acta crystallographica. Section D, Biological crystallography.

[18]  P. Evans,et al.  Scaling and assessment of data quality. , 2006, Acta crystallographica. Section D, Biological crystallography.

[19]  R. Thorne,et al.  Hyperquenching for protein cryocrystallography. , 2006, Journal of applied crystallography.

[20]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[21]  J. Fontecilla-Camps,et al.  Structural characterization of a putative endogenous metal chelator in the periplasmic nickel transporter NikA. , 2008, Biochemistry.

[22]  Konrad Büssow,et al.  Automated technologies and novel techniques to accelerate protein crystallography for structural genomics , 2008, Proteomics.

[23]  Florent Cipriani,et al.  Improving diffraction by humidity control: a novel device compatible with X-ray beamlines. , 2009, Acta crystallographica. Section D, Biological crystallography.

[24]  L Jacquamet,et al.  Upgrade of the CATS sample changer on FIP-BM30A at the ESRF: towards a commercialized standard. , 2009, Journal of synchrotron radiation.

[25]  Michaël Gauthier,et al.  Silicon end-effectors for microgripping tasks , 2009 .

[26]  Changgeng Liu,et al.  Design and fabrication of SU-8 micro optic fiber holder with cantilever-type elastic microclips , 2009 .

[27]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[28]  Nathaniel Echols,et al.  The Phenix software for automated determination of macromolecular structures. , 2011, Methods.

[29]  Robert Viola,et al.  First experiences with semi-autonomous robotic harvesting of protein crystals , 2011, Journal of Structural and Functional Genomics.

[30]  T. Tomizaki,et al.  SLS Crystallization Platform at Beamline X06DA—A Fully Automated Pipeline Enabling in Situ X-ray Diffraction Screening , 2011 .

[31]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[32]  Florent Cipriani,et al.  CrystalDirect: a new method for automated crystal harvesting based on laser-induced photoablation of thin films. , 2012, Acta crystallographica. Section D, Biological crystallography.