Analysis of large experimental datasets in electrochemical impedance spectroscopy.

An approach for the analysis of large experimental datasets in electrochemical impedance spectroscopy (EIS) has been developed. The approach uses the idea of successive Bayesian estimation and splits the multidimensional EIS datasets into parts with reduced dimensionality. Afterwards, estimation of the parameters of the EIS-models is performed successively, from one part to another, using complex nonlinear least squares (CNLS) method. The results obtained on the previous step are used as a priori values (in the Bayesian form) for the analysis of the next part. To provide high stability of the sequential CNLS minimisation procedure, a new hybrid algorithm has been developed. This algorithm fits the datasets of reduced dimensionality to the selected EIS models, provides high stability of the fitting and allows semi-automatic data analysis on a reasonable timescale. The hybrid algorithm consists of two stages in which different zero-order optimisation strategies are used, reducing both the computational time and the probability to overlook the global optimum. The performance of the developed approach has been evaluated using (i) simulated large EIS dataset which represents a possible output of a scanning electrochemical impedance microscopy experiments, and (ii) experimental dataset, where EIS spectra were acquired as a function of the electrode potential and time. The developed data analysis strategy showed promise and can be further extended to other electroanalytical EIS applications which require multidimensional data analysis.

[1]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[2]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[3]  Daria Vladikova,et al.  Secondary differential impedance analysis – a tool for recognition of CPE behavior , 2004 .

[4]  J. Macdonald,et al.  Comparison and application of two methods for the least squares analysis of immittance data , 1992 .

[5]  G. Dantzig Origins of the simplex method , 1990 .

[6]  Alexey L. Pomerantsev,et al.  Non‐linear regression analysis: new approach to traditional implementations , 2000 .

[7]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[8]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .

[9]  W. Schuhmann,et al.  Frequency-dependent alternating-current scanning electrochemical microscopy (4D AC-SECM) for local visualisation of corrosion sites. , 2008, Chemistry.

[10]  Osvaldo N Oliveira,et al.  Information visualization techniques for sensing and biosensing. , 2011, The Analyst.

[11]  A. Bondarenko,et al.  Multiparametric electrochemical characterisation of Te-Cu-Pb atomic three-layer structure deposition on polycrystalline gold , 2006 .

[12]  B. Boukamp A Nonlinear Least Squares Fit procedure for analysis of immittance data of electrochemical systems , 1986 .

[13]  Ib Chorkendorff,et al.  The Pt(111)/electrolyte interface under oxygen reduction reaction conditions: an electrochemical impedance spectroscopy study. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[14]  Alexey L. Pomerantsev Successive Bayesian estimation of reaction rate constants from spectral data , 2003 .

[15]  A. Bondarenko,et al.  Towards a detailed in situ characterization of non-stationary electrocatalytic systems. , 2012, The Analyst.

[16]  Mark E. Orazem,et al.  Electrochemical Impedance Spectroscopy: Orazem/Electrochemical , 2008 .

[17]  Bernard A. Boukamp,et al.  A package for impedance/admittance data analysis , 1986 .

[18]  Potentiodynamic electrochemical impedance spectroscopy of silver on platinum in underpotential and overpotential deposition , 2003, cond-mat/0310449.

[19]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[20]  A. Bondarenko,et al.  Multiparametric characterisation of metal-chalcogen atomic multilayer assembly by potentiodynamic electrochemical impedance spectroscopy , 2008 .

[21]  Gerd Vandersteen,et al.  Optimal multisine excitation design for broadband electrical impedance spectroscopy , 2011 .

[22]  A. Bondarenko,et al.  Potentiodynamic Electrochemical Impedance Spectroscopy for Solid State Chemistry , 2003 .

[23]  Marystela Ferreira,et al.  Strategies to optimize biosensors based on impedance spectroscopy to detect phytic acid using layer-by-layer films. , 2010, Analytical chemistry.

[24]  Osvaldo N. Oliveira,et al.  Detection of glucose and triglycerides using information visualization methods to process impedance spectroscopy data , 2012 .

[25]  A. Bondarenko,et al.  Probing electrode/electrolyte interface during intercalation of Cu into Te , 2012 .

[26]  W. Schuhmann,et al.  Alternating current techniques in scanning electrochemical microscopy (AC-SECM). , 2008, The Analyst.

[27]  A. Bondarenko,et al.  Influence of Cs+ and Na+ on Specific Adsorption of *OH, *O, and *H at Platinum in Acidic Sulfuric Media , 2012 .

[28]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[29]  William H. Press,et al.  Numerical recipes in C , 2002 .

[30]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[31]  R. Pintelon,et al.  Potentiodynamic EIS investigation of the 2-methyl-5-mercapto-1,3,4-thiadiazole adsorption on copper , 2008 .

[32]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[33]  On One Method of Parameter Estimation in Chemical Kinetics Using Spectra with Unknown Spectral Components , 2004 .

[34]  A. S. Bondarenko,et al.  Characterisation of the electrochemical redox behaviour of Pt electrodes by potentiodynamic electrochemical impedance spectroscopy , 2010 .

[35]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[36]  A. Bondarenko,et al.  Simultaneous Acquisition of Impedance and Gravimetric Data in a Cyclic Potential Scan for the Characterization of Nonstationary Electrode/Electrolyte Interfaces , 2011 .

[37]  C. M. Pettit,et al.  Combining impedance spectroscopy with cyclic voltammetry: measurement and analysis of kinetic parameters for faradaic and nonfaradaic reactions on thin-film gold. , 2006, Analytical chemistry.

[38]  J. Ross Macdonald,et al.  A flexible procedure for analyzing impedance spectroscopy results: Description and illustrations , 1987 .

[39]  J. A. Garber,et al.  Analysis of Impedance and Admittance Data for Solids and Liquids , 1977 .

[40]  Isaac Abrahams,et al.  The use of genetic algorithms in the non-linear regression of immittance data , 1998 .