Pairing Symmetries for Euclidean and Spherical Frameworks

We consider the effect of symmetry on the rigidity of bar-joint frameworks, spherical frameworks and point-hyperplane frameworks in $${\mathbb {R}}^d$$ R d . In particular, for a graph $$G=(V,E)$$ G = ( V , E ) and a framework ( G ,  p ), we show that, under forced or incidental symmetry, infinitesimal rigidity for spherical frameworks with vertices in some subset $$X\subset V$$ X ⊂ V realised on the equator and point-hyperplane frameworks with the vertices in X representing hyperplanes are equivalent. We then show, again under forced or incidental symmetry, that infinitesimal rigidity properties under certain symmetry groups can be paired, or clustered, under inversion on the sphere so that infinitesimal rigidity with a given group is equivalent to infinitesimal rigidity under a paired group. The fundamental basic example is that mirror symmetric rigidity is equivalent to half-turn symmetric rigidity on the 2-sphere. With these results in hand we also deduce some combinatorial consequences for the rigidity of symmetric bar-joint and point-line frameworks.

[1]  Bernd Schulze,et al.  Coning, Symmetry and Spherical Frameworks , 2011, Discret. Comput. Geom..

[2]  Robert Connelly,et al.  Global Rigidity: The Effect of Coning , 2010, Discret. Comput. Geom..

[3]  John H. Conway,et al.  On Quaternions and Octonions , 2003 .

[4]  Robert Connelly,et al.  When is a symmetric pin-jointed framework isostatic? , 2008, 0803.2325.

[5]  Douglas J. Klein,et al.  Group Theory and Chemistry , 1973 .

[6]  LVI. On the application of Barycentric perspective to the transformation of structures , 1863 .

[7]  Ivan Izmestiev,et al.  Projective background of the infinitesimal rigidity of frameworks , 2008, 0804.2694.

[8]  Bill Jackson,et al.  Point-hyperplane frameworks, slider joints, and rigidity preserving transformations , 2017, J. Comb. Theory, Ser. B.

[9]  Simon D. Guest,et al.  Detection of finite mechanisms in symmetric structures , 1999 .

[10]  Simon D. Guest,et al.  When is a symmetric body-bar structure isostatic? , 2010 .

[11]  B. Roth,et al.  The rigidity of graphs , 1978 .

[12]  Shin-ichi Tanigawa Matroids of Gain Graphs in Applied Discrete Geometry , 2012, 1207.3601.

[13]  Bernd Schulze,et al.  Symmetry as a Sufficient Condition for a Finite Flex , 2009, SIAM J. Discret. Math..

[14]  Walter Whiteley,et al.  SOME NOTES ON THE EQUIVALENCE OF FIRST-ORDER RIGIDITY IN VARIOUS GEOMETRIES , 2007, 0709.3354.

[15]  Bernd Schulze,et al.  Linking rigid bodies symmetrically , 2014, Eur. J. Comb..

[16]  W. Whiteley,et al.  Rigidity of Symmetric Frameworks , 2017 .

[17]  Anthony Nixon,et al.  Symmetry-forced rigidity of frameworks on surfaces , 2013, 1312.1480.

[18]  Louis Theran,et al.  Frameworks with Forced Symmetry I: Reflections and Rotations , 2013, Discret. Comput. Geom..

[19]  Bernd Schulze,et al.  The Orbit Rigidity Matrix of a Symmetric Framework , 2010, Discret. Comput. Geom..

[20]  Shin-ichi Tanigawa,et al.  Infinitesimal Rigidity of Symmetric Bar-Joint Frameworks , 2013, SIAM J. Discret. Math..

[21]  A. H. Willis,et al.  Kinematics of mechanisms , 1953 .

[22]  Zsolt Fekete,et al.  Rigid Two-Dimensional Frameworks with Two Coincident Points , 2014, Graphs and Combinatorics.

[23]  J. C. Owen,et al.  Frameworks Symmetry and Rigidity , 2008, Int. J. Comput. Geom. Appl..

[24]  Shin-ichi Tanigawa,et al.  Count Matroids of Group-Labeled Graphs , 2015, Comb..

[25]  Meera Sitharam,et al.  Handbook of Geometric Constraint Systems Principles , 2018 .

[26]  Timothy G. Abbott Generalizations of Kempe's universality theorem , 2008 .

[27]  Bernd Schulze,et al.  Infinitesimal Rigidity of Symmetric Bar-Joint Frameworks , 2015, SIAM J. Discret. Math..

[28]  Yaser Eftekhari,et al.  Geometry of Point-Hyperplane and Spherical Frameworks , 2017 .

[29]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[30]  Bernd Schulze Combinatorial rigidity of symmetric and periodic frameworks , 2018 .

[31]  W. Whiteley,et al.  Statics of Frameworks and Motions of Panel Structures: A projective Geometric Introduction , 1982 .

[32]  Bernd Schulze,et al.  Symmetric Laman Theorems for the Groups C2 and Cs , 2010, Electron. J. Comb..

[33]  Bill Jackson,et al.  A characterisation of the generic rigidity of 2-dimensional point-line frameworks , 2014, J. Comb. Theory, Ser. B.

[34]  Bernd Schulze,et al.  Symmetric Versions of Laman’s Theorem , 2009, Discret. Comput. Geom..

[35]  A. V. Pogorelov Extrinsic geometry of convex surfaces , 1973 .

[36]  Tibor Jordán,et al.  Gain-Sparsity and Symmetry-Forced Rigidity in the Plane , 2016, Discret. Comput. Geom..

[37]  Walter Whiteley,et al.  Rigidity and scene analysis , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[38]  Patrick W. Fowler,et al.  Symmetry conditions and finite mechanisms , 2007 .