Towards Taming the Resource and Data Heterogeneity in Federated Learning

[1]  Rui Zhang,et al.  A Hybrid Approach to Privacy-Preserving Federated Learning , 2018, Informatik Spektrum.

[2]  Takayuki Nishio,et al.  Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge , 2018, ICC 2019 - 2019 IEEE International Conference on Communications (ICC).

[3]  Kin K. Leung,et al.  When Edge Meets Learning: Adaptive Control for Resource-Constrained Distributed Machine Learning , 2018, IEEE INFOCOM 2018 - IEEE Conference on Computer Communications.

[4]  Yi Zhou,et al.  Random gradient extrapolation for distributed and stochastic optimization , 2017, SIAM J. Optim..

[5]  Yi Zhou,et al.  An optimal randomized incremental gradient method , 2015, Mathematical Programming.

[6]  Tassilo Klein,et al.  Differentially Private Federated Learning: A Client Level Perspective , 2017, ArXiv.

[7]  Ameet Talwalkar,et al.  Federated Multi-Task Learning , 2017, NIPS.

[8]  Blaise Agüera y Arcas,et al.  Communication-Efficient Learning of Deep Networks from Decentralized Data , 2016, AISTATS.

[9]  Peter Richtárik,et al.  Federated Learning: Strategies for Improving Communication Efficiency , 2016, ArXiv.

[10]  Jiayu Zhou,et al.  Asynchronous Multi-task Learning , 2016, 2016 IEEE 16th International Conference on Data Mining (ICDM).

[11]  Colin Tankard,et al.  What the GDPR means for businesses , 2016, Netw. Secur..

[12]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[13]  Samy Bengio,et al.  Revisiting Distributed Synchronous SGD , 2016, ArXiv.

[14]  Alexander J. Smola,et al.  Scaling Distributed Machine Learning with the Parameter Server , 2014, OSDI.

[15]  Tim Kraska,et al.  MLbase: A Distributed Machine-learning System , 2013, CIDR.

[16]  K. Kudsk,et al.  Health Insurance Portability Accountability Act (HIPAA) Regulations: Effect on Medical Record Research , 2004, Annals of surgery.