Extrapolation at regional scale of local soil knowledge using boosted classification trees: A two-step approach

[1]  Keith McCloy,et al.  Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models: the case study of Denmark. , 2010, Journal of environmental management.

[2]  Sabine Grunwald,et al.  Multi-criteria characterization of recent digital soil mapping and modeling approaches , 2009 .

[3]  Dominique Arrouays,et al.  Optimizing pedotransfer functions for estimating soil bulk density using boosted regression trees. , 2009 .

[4]  M. Hughes,et al.  Automatic landform stratification and environmental correlation for modelling loess landscapes in North Otago, South Island, New Zealand , 2009 .

[5]  Sabine Grunwald,et al.  Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra , 2008 .

[6]  J Elith,et al.  A working guide to boosted regression trees. , 2008, The Journal of animal ecology.

[7]  Elizabeth Pattey,et al.  Mapping within-field soil drainage using remote sensing, DEM and apparent soil electrical conductivity , 2008 .

[8]  Dominique Arrouays,et al.  Extrapolating regional soil landscapes from an existing soil map: Sampling intensity, validation procedures, and integration of spatial context , 2008 .

[9]  Budiman Minasny,et al.  Incorporating taxonomic distance into spatial prediction and digital mapping of soil classes , 2007 .

[10]  David J. Brown Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order Uganda watershed , 2007 .

[11]  Violette Geissen,et al.  Superficial and subterranean soil erosion in Tabasco, tropical Mexico : Development of a decision tree modeling approach , 2007 .

[12]  Dagmar Haase,et al.  Loess in Europe—its spatial distribution based on a European Loess Map, scale 1:2,500,000 , 2007 .

[13]  Niklaus E. Zimmermann,et al.  Predicting tree species presence and basal area in Utah: A comparison of stochastic gradient boosting, generalized additive models, and tree-based methods , 2006 .

[14]  K. Shepherd,et al.  Global soil characterization with VNIR diffuse reflectance spectroscopy , 2006 .

[15]  B. Henderson,et al.  Australia-wide predictions of soil properties using decision trees , 2005 .

[16]  P. Scull,et al.  The application of classification tree analysis to soil type prediction in a desert landscape , 2005 .

[17]  Rick L. Lawrence,et al.  Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis , 2004 .

[18]  B. Minasny,et al.  Digital Soil Mapping , 2017 .

[19]  Paul M. Mather,et al.  An assessment of the effectiveness of decision tree methods for land cover classification , 2003 .

[20]  Jerome H Friedman,et al.  Multiple additive regression trees with application in epidemiology , 2003, Statistics in medicine.

[21]  Elisabeth N. Bui,et al.  Spatial data mining for enhanced soil map modelling , 2002, Int. J. Geogr. Inf. Sci..

[22]  J. Friedman Stochastic gradient boosting , 2002 .

[23]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[24]  N. McKenzie,et al.  Spatial prediction of soil properties using environmental correlation , 1999 .

[25]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[26]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[27]  Philippe Lagacherie,et al.  A soil survey procedure using the knowledge of soil pattern established on a previously mapped reference area , 1995 .

[28]  J. Michaelsen,et al.  Regression Tree Analysis of satellite and terrain data to guide vegetation sampling and surveys , 1994 .

[29]  James C. Bell,et al.  Calibration and Validation of a Soil-Landscape Model for Predicting Soil Drainage Class , 1992 .

[30]  Alex B. McBratney,et al.  Soil pattern recognition with fuzzy-c-means : application to classification and soil-landform interrelationships , 1992 .

[31]  Brian G. Lees,et al.  Decision-tree and rule-induction approach to integration of remotely sensed and GIS data in mapping vegetation in disturbed or hilly environments , 1991 .

[32]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[33]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[34]  Alfred E. Hartemink,et al.  Digital soil mapping: bridging research, environmental application, and operation , 2010 .

[35]  Alfred E. Hartemink,et al.  Digital Soil Mapping with Limited Data , 2008 .

[36]  Laurence Le Dû-Blayo,et al.  Enhancing the Use of Remotely-Sensed Data and Information for Digital Soilscape Mapping , 2008 .

[37]  Deutsche Ausgabe World Reference Base for Soil Resources 2006 , 2007 .

[38]  Philippe Lagacherie,et al.  Integrating pedological knowledge into digital soil mapping , 2007 .

[39]  Frédérick Carrier Utilisation de la spectrométrie gamma aéroportée (uranium, thorium, potassium) pour quantifier les processus d'érosion et d'altération , 2005 .

[40]  Chris Moran,et al.  A strategy to fill gaps in soil survey over large spatial extents: an example from the Murray-Darling basin of Australia , 2003 .

[41]  Elisabeth N. Bui,et al.  Extracting soil-landscape rules from previous soil surveys , 1999 .

[42]  E. R. Levine,et al.  Predicting Soil Drainage Class Using Remotely Sensed and Digital Elevation Data , 1997 .

[43]  J. Wilford,et al.  Application of airborne gamma-ray spectrometry in soil/regolith mapping and applied geomorphology , 1997 .

[44]  Simon E. Cook,et al.  Use of airborne gamma radiometric data for soil mapping , 1996 .

[45]  Christian Walter,et al.  Mapping waterlogging of soils using digital terrain models , 1995 .

[46]  C. Walter Estimation de proprietes du sol et quantification de leur variabilite a moyenne echelle : cartographie pedologique et geostatistique sur un secteur du sud de l'ille-et-vilaine , 1990 .

[47]  R. Congalton,et al.  Accuracy assessment: a user's perspective , 1986 .

[48]  W. C. Kvaraceus,et al.  Principles and Practices , 2006 .