An active approach for detection of incipient faults

The methodology of auxiliary signal design for robust fault detection based on a multi-model (MM) formulation of normal and faulty systems is used to study the problem of incipient fault detection. The fault is modelled as a drift in a system parameter, and an auxiliary signal is to be designed to enhance the detection of variations in this parameter. It is shown that it is possible to consider the model of the system with a drifted parameter as a second model and use the MM framework for designing the auxiliary signal by considering the limiting case as the parameter variation goes to zero. The result can be applied very effectively to many early detection problems where small parameter variations should be detected. Two different approaches for computing the test signal are given and compared on several computational examples.

[1]  Xue Jun Zhang,et al.  Auxiliary Signal Design in Fault Detection and Diagnosis , 1989 .

[2]  Lei Guo,et al.  Observer-based optimal fault detection using PDFs for time-delay stochastic systems , 2008 .

[3]  Hartmut Bossel,et al.  Modeling and simulation , 1994 .

[4]  Feza Kerestecio,et al.  Change Detection and Input Design in Dynamical Systems , 1993 .

[5]  Bin Jiang,et al.  Active fault tolerant control for a class of nonlinear systems , 2003 .

[6]  Jung-Shan Lin,et al.  Sensorless speed tracking control with backstepping design scheme for permanent magnet synchronous motors , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..

[7]  Henrik Niemann,et al.  A Setup for Active Fault Diagnosis , 2006, IEEE Transactions on Automatic Control.

[8]  M. Zarrop,et al.  Input design for detection of abrupt changes in dynamical systems , 1994 .

[9]  K. G,et al.  Robust fault detection based on compensation of the modelling error , 2002 .

[10]  Ramine Nikoukhah,et al.  Guaranteed Active Failure Detection and Isolation for Linear Dynamical Systems , 1998, Autom..

[11]  L. Blackmore,et al.  Finite Horizon Control Design for Optimal Model Discrimination , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[12]  Hong Wang,et al.  Fault detection and diagnosis for general stochastic systems using B-spline expansions and nonlinear filters , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[13]  Hans Henrik Niemann Active Fault Diagnosis in Closed-Loop Uncertain Systems , 2007 .

[14]  Stephen L. Campbell,et al.  Auxiliary signal design for rapid multi-model identification using optimization , 2002, Autom..

[15]  Alexander G. Parlos,et al.  Incipient fault detection and identification in process systems using accelerated neural network learning , 1994 .

[16]  Feza Kerestecioglu,et al.  Change Detection and Input Design in Dynamical Systems , 1993 .

[17]  Katsuji Uosaki,et al.  Optimal Input Design for Autoregressive Model Discrimination with Constrained Output Variance , 1983, 1983 American Control Conference.

[18]  Hong Wang,et al.  Filter‐based fault detection and diagnosis using output PDFs for stochastic systems with time delays , 2006 .

[19]  Ramine Nikoukhah,et al.  Auxiliary Signal Design for Failure Detection , 2004 .

[20]  Jean-Philippe Chancelier,et al.  Modeling and Simulation in Scilab/Scicos , 2006 .

[21]  François Delebecque,et al.  Detection signal design for failure detection: a robust approach , 2000 .

[22]  Mo-Yuen Chow Methodologies of Using Neural Network and Fuzzy Logic Technologies for Motor Incipient Fault Detection , 1998 .

[23]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[24]  Mo-Yuen Chow,et al.  Using a neural/fuzzy system to extract heuristic knowledge of incipient faults in induction motors: Part II-Application , 1995, IEEE Trans. Ind. Electron..

[25]  D. Choe,et al.  Model based failure detection using test signals from linearizations: A case study , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[26]  Marios M. Polycarpou,et al.  Incipient fault diagnosis of dynamical systems using online approximators , 1998 .

[27]  Stephen L. Campbell,et al.  On the Detection of Small Parameter Variations in Linear Uncertain Systems , 2008, Eur. J. Control.

[28]  Keith R. Godfrey,et al.  Perturbation signals for system identification , 1993 .

[29]  R. Nikoukhah,et al.  Robust detection of incipient faults: an active approach , 2006, 2006 14th Mediterranean Conference on Control and Automation.

[30]  M. Simandl,et al.  Rolling horizon for active fault detection , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[31]  Paul M. Frank,et al.  Issues of Fault Diagnosis for Dynamic Systems , 2010, Springer London.

[32]  Hans Henrik Niemann ACTIVE FAULT DIAGNOSIS IN CLOSED-LOOP UNCERTAIN SYSTEMS , 2006 .

[33]  François Delebecque,et al.  Auxiliary signal design for robust multimodel identification , 2002, IEEE Trans. Autom. Control..

[34]  Marios M. Polycarpou,et al.  A robust detection and isolation scheme for abrupt and incipient faults in nonlinear systems , 2002, IEEE Trans. Autom. Control..

[35]  Stephen L. Campbell,et al.  A Multi-Model Approach to Failure Detection in Uncertain Sampled-Data Systems , 2005, Eur. J. Control.

[36]  Stephen L. Campbell,et al.  Auxiliary signal design for active failure detection in uncertain linear systems with a priori information , 2006, Autom..

[37]  Mo-Yuen Chow,et al.  Using a neural/fuzzy system to extract heuristic knowledge of incipient faults in induction motors. Part I-Methodology , 1995, IEEE Trans. Ind. Electron..

[38]  Paul M. Frank,et al.  Dynamic Model Based Incipient Fault Detection Concept for Robots , 1990 .