Distributed Computing

We study the problem of computing approximate minimum edge cuts by distributed algorithms. We use a standard synchronous message passing model where in each round, O(log n) bits can be transmitted over each edge (a.k.a. the CONGEST model). The first algorithm is based on a simple and new approach for analyzing random edge sampling, which we call the random layering technique. For any weighted graph and any ∈ (0, 1), the algorithm with high probability finds a cut of size at most O( −1λ) in O(D) + Õ(n ) rounds, where λ is the size of the minimum cut and the Õ-notation hides poly-logarithmic factors in n. In addition, based on a centralized algorithm due to Matula [SODA ’93], we present a randomized distributed algorithm that with high probability computes a cut of size at most (2 + )λ in Õ((D + √ n)/ ) rounds for any > 0. The time complexities of our algorithms almost match the Ω̃(D+ √ n) lower bound of Das Sarma et al. [STOC ’11], thus leading to an answer to an open question raised by Elkin [SIGACT-News ’04] and Das Sarma et al. [STOC ’11]. To complement our upper bound results, we also strengthen the Ω̃(D + √ n) lower bound of Das Sarma et al. by extending it to unweighted graphs. We show that the same lower bound also holds for unweighted multigraphs (or equivalently for weighted graphs in which O(w log n) bits can be transmitted in each round over an edge of weight w). For unweighted simple graphs, we show that computing an α-approximate minimum cut requires time at least Ω̃(D + √ n/α).

[1]  Christian Scheideler,et al.  A Jamming-Resistant MAC Protocol for Multi-Hop Wireless Networks , 2010, DISC.

[2]  E T. Leighton,et al.  Introduction to parallel algorithms and architectures , 1991 .

[3]  Thomas Sauerwald,et al.  Ultra-fast rumor spreading in social networks , 2012, SODA.

[4]  David R. Karger,et al.  Minimum cuts in near-linear time , 1996, STOC '96.

[5]  Christian Scheideler,et al.  Self-stabilizing leader election for single-hop wireless networks despite jamming , 2011, MobiHoc '11.

[6]  Alexander A. Razborov,et al.  On the Distributional Complexity of Disjointness , 1992, Theor. Comput. Sci..

[7]  Eli Upfal,et al.  Randomized Broadcast in Networks , 1990, Random Struct. Algorithms.

[8]  Doug Terry,et al.  Epidemic algorithms for replicated database maintenance , 1988, OPSR.

[9]  Ramakrishna Thurimella Sub-Linear Distributed Algorithms for Sparse Certificates and Biconnected Components , 1997, J. Algorithms.

[10]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[11]  Ashish Goel,et al.  Graph Sparsification via Refinement Sampling , 2010, ArXiv.

[12]  Martin Raab,et al.  "Balls into Bins" - A Simple and Tight Analysis , 1998, RANDOM.

[13]  George Giakkoupis,et al.  Tight bounds for rumor spreading in graphs of a given conductance , 2011, STACS.

[14]  Muriel Médard,et al.  Algebraic gossip: a network coding approach to optimal multiple rumor mongering , 2006, IEEE Transactions on Information Theory.

[15]  Mahmoud Fouz,et al.  Social networks spread rumors in sublogarithmic time , 2011, STOC '11.

[16]  David R. Karger,et al.  Global min-cuts in RNC, and other ramifications of a simple min-out algorithm , 1993, SODA '93.

[17]  David R. Karger,et al.  Random sampling in cut, flow, and network design problems , 1994, STOC '94.

[18]  A. Nilli On the second eigenvalue of a graph , 1991 .

[19]  Michael Elkin,et al.  Distributed approximation: a survey , 2004, SIGA.

[20]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[21]  J. Picard,et al.  Selected Applications of Minimum Cuts in Networks , 1982 .

[22]  Harold N. Gabow A matroid approach to finding edge connectivity and packing arborescences , 1991, STOC '91.

[23]  Johannes Gehrke,et al.  Gossip-based computation of aggregate information , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[24]  David R. Karger,et al.  An Õ(n2) algorithm for minimum cuts , 1993, STOC.

[25]  B. Pittel On spreading a rumor , 1987 .

[26]  D. Matula A linear time 2 + ε approximation algorithm for edge connectivity , 1993, SODA 1993.

[27]  Mor Harchol-Balter,et al.  Resource discovery in distributed networks , 1999, PODC '99.

[28]  Christian Scheideler,et al.  Competitive and Fair Medium Access Despite Reactive Jamming , 2011, 2011 31st International Conference on Distributed Computing Systems.

[29]  Richard M. Karp,et al.  Randomized rumor spreading , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[30]  Alan M. Frieze,et al.  The shortest-path problem for graphs with random arc-lengths , 1985, Discret. Appl. Math..

[31]  Bala Kalyanasundaram,et al.  The Probabilistic Communication Complexity of Set Intersection , 1992, SIAM J. Discret. Math..

[32]  Fabian Kuhn,et al.  Distributed Minimum Cut Approximation , 2013, DISC.

[33]  Christian Schindelhauer,et al.  Distributed random digraph transformations for peer-to-peer networks , 2006, SPAA '06.

[34]  Benjamin Doerr,et al.  Quasirandom rumor spreading , 2008, SODA 2008.

[35]  Shay Kutten,et al.  Fast distributed construction of k-dominating sets and applications , 1995, PODC '95.

[36]  Pierre Fraigniaud,et al.  Opportunistic spatial gossip over mobile social networks , 2008, WOSN '08.

[37]  F. Chung,et al.  Connected Components in Random Graphs with Given Expected Degree Sequences , 2002 .

[38]  Harald Niederreiter,et al.  Probability and computing: randomized algorithms and probabilistic analysis , 2006, Math. Comput..

[39]  Joan Jacobs Correctness of Gossip-Based Membership under Message Loss , 2009 .

[40]  David R. Karger,et al.  Using randomized sparsification to approximate minimum cuts , 1994, SODA '94.

[41]  Peter Elias,et al.  A note on the maximum flow through a network , 1956, IRE Trans. Inf. Theory.

[42]  Toshihide Ibaraki,et al.  Computing Edge-Connectivity in Multigraphs and Capacitated Graphs , 1992, SIAM J. Discret. Math..

[43]  Petar Maymounkov,et al.  Global computation in a poorly connected world: fast rumor spreading with no dependence on conductance , 2011, STOC '12.

[44]  Chen Avin,et al.  Structural Properties of Rich Clubs , 2011 .