Stability of the planetary three-body problem

We present a direct method for the expansion of the planetary Hamiltonian in Poincaré canonical elliptic variables with its effective implementation in computer algebra. This method allows us to demonstrate the existence of simplifications occurring in the analytical expression of the Hamiltonian coefficients. All the coefficients depending on the ratio of the semi major axis can thus be expressed in a concise and canonical form.

[1]  A. Neishtadt Estimates in the kolmogorov theorem on conservation of conditionally periodic motions , 1981 .

[2]  Henri Poincaré,et al.  méthodes nouvelles de la mécanique céleste , 1892 .

[3]  P. Robutel,et al.  Stability of the planetary three-body problem , 1995 .

[4]  J. Moser,et al.  Quasi-periodic Solutions for the three-body problem , 1966 .

[5]  A. Deprit,et al.  STABILITY OF THE TRIANGULAR LAGRANGIAN POINTS , 1967 .

[6]  J. Laskar Analytical Framework in Poincare Variables for the Motion of the Solar System , 1991 .

[7]  J. Laskar Secular terms of classical planetary theories using the results of general theory , 1986 .

[8]  William H. Press,et al.  Numerical recipes , 1990 .

[9]  Jacques Laskar,et al.  Accurate methods in general planetary theory , 1985 .

[10]  A. Celletti Analysis of resonances in the spin-orbit problem in Celestial Mechanics: Higher order resonances and some numerical experiments (Part II) , 1990 .

[11]  A. Celletti Analysis of resonances in the spin-orbit problem in Celestial Mechanics: The synchronous resonance (Part I) , 1990 .

[12]  L. Galgani,et al.  Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem , 1989 .

[13]  Burton B. Lieberman Existence of quasi-periodic solutions to the three-body problem , 1971 .

[14]  Henri Poincaré,et al.  Leçons de mécanique céleste , 1905 .

[15]  J. Laskar Secular evolution of the solar system over 10 million years , 1988 .

[16]  G. Sussman,et al.  Chaotic Evolution of the Solar System , 1992, Science.

[17]  P. Robutel Contribution à l'étude de la stabilité du problème planétaire des trois-corps , 1993 .

[18]  Dumas,et al.  Global dynamics and long-time stability in Hamiltonian systems via numerical frequency analysis. , 1993, Physical review letters.

[19]  K. Meyer,et al.  The Stability of the Lagrange Triangular Point and a Theorem of Arnold , 1986 .

[20]  J. Laskar Large-scale chaos in the solar system. , 1994 .

[21]  Jacques Laskar,et al.  The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones , 1990 .

[22]  Laurent Niederman Résonances et stabilité dans le problème planétaire : solutions de seconde espèce , 1993 .

[23]  V. Arnold SMALL DENOMINATORS AND PROBLEMS OF STABILITY OF MOTION IN CLASSICAL AND CELESTIAL MECHANICS , 1963 .

[24]  Luigi Chierchia,et al.  Construction of analytic KAM surfaces and effective stability bounds , 1988 .

[25]  P. Bretagnon Theorie du mouvement de l'ensemble des planetes (VSOP82). , 1982 .

[26]  G. Sussman,et al.  Numerical Evidence That the Motion of Pluto Is Chaotic , 1988, Science.

[27]  J. Laskar A numerical experiment on the chaotic behaviour of the Solar System , 1989, Nature.

[28]  A. Kolmogorov On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .