Stability of the planetary three-body problem
暂无分享,去创建一个
[1] A. Neishtadt. Estimates in the kolmogorov theorem on conservation of conditionally periodic motions , 1981 .
[2] Henri Poincaré,et al. méthodes nouvelles de la mécanique céleste , 1892 .
[3] P. Robutel,et al. Stability of the planetary three-body problem , 1995 .
[4] J. Moser,et al. Quasi-periodic Solutions for the three-body problem , 1966 .
[5] A. Deprit,et al. STABILITY OF THE TRIANGULAR LAGRANGIAN POINTS , 1967 .
[6] J. Laskar. Analytical Framework in Poincare Variables for the Motion of the Solar System , 1991 .
[7] J. Laskar. Secular terms of classical planetary theories using the results of general theory , 1986 .
[8] William H. Press,et al. Numerical recipes , 1990 .
[9] Jacques Laskar,et al. Accurate methods in general planetary theory , 1985 .
[10] A. Celletti. Analysis of resonances in the spin-orbit problem in Celestial Mechanics: Higher order resonances and some numerical experiments (Part II) , 1990 .
[11] A. Celletti. Analysis of resonances in the spin-orbit problem in Celestial Mechanics: The synchronous resonance (Part I) , 1990 .
[12] L. Galgani,et al. Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem , 1989 .
[13] Burton B. Lieberman. Existence of quasi-periodic solutions to the three-body problem , 1971 .
[14] Henri Poincaré,et al. Leçons de mécanique céleste , 1905 .
[15] J. Laskar. Secular evolution of the solar system over 10 million years , 1988 .
[16] G. Sussman,et al. Chaotic Evolution of the Solar System , 1992, Science.
[17] P. Robutel. Contribution à l'étude de la stabilité du problème planétaire des trois-corps , 1993 .
[18] Dumas,et al. Global dynamics and long-time stability in Hamiltonian systems via numerical frequency analysis. , 1993, Physical review letters.
[19] K. Meyer,et al. The Stability of the Lagrange Triangular Point and a Theorem of Arnold , 1986 .
[20] J. Laskar. Large-scale chaos in the solar system. , 1994 .
[21] Jacques Laskar,et al. The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones , 1990 .
[22] Laurent Niederman. Résonances et stabilité dans le problème planétaire : solutions de seconde espèce , 1993 .
[23] V. Arnold. SMALL DENOMINATORS AND PROBLEMS OF STABILITY OF MOTION IN CLASSICAL AND CELESTIAL MECHANICS , 1963 .
[24] Luigi Chierchia,et al. Construction of analytic KAM surfaces and effective stability bounds , 1988 .
[25] P. Bretagnon. Theorie du mouvement de l'ensemble des planetes (VSOP82). , 1982 .
[26] G. Sussman,et al. Numerical Evidence That the Motion of Pluto Is Chaotic , 1988, Science.
[27] J. Laskar. A numerical experiment on the chaotic behaviour of the Solar System , 1989, Nature.
[28] A. Kolmogorov. On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .