General Aspects of the Functional-Integral Approach to the Polaron and Related Systems

The aim of these notes is to give a tutorial but concise introduction to the functional-integral method as being relevant to the (understanding of) applications to the polaron and related systems. For some of the more recent applications to the statics of these systems the reader is referred to the quoted literature.

[1]  V. Sa-yakanit The Feynman effective mass of the polaron , 1979 .

[2]  J. Glimm,et al.  Quantum Physics: A Functional Integral Point of View , 1981 .

[3]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[4]  Michel Loève,et al.  Probability Theory I , 1977 .

[5]  B. Simon Functional integration and quantum physics , 1979 .

[6]  Hermann Haken,et al.  Chaos and Order in Nature , 1981 .

[7]  M. Saitoh Theory of a Polaron at Finite Temperatures , 1980 .

[8]  E. Tirapegui,et al.  Functional Integration and Semiclassical Expansions , 1982 .

[9]  A new method for the asymptotic evaluation of a class of path integrals , 1982 .

[10]  Richard Phillips Feynman,et al.  Slow Electrons in a Polar Crystal , 1955 .

[11]  E. Gross Partition function for an electron in a random potential , 1977 .

[12]  A generalization of Feynman's variational principle for real path integrals , 1978 .

[13]  R. Feynman An Operator calculus having applications in quantum electrodynamics , 1951 .

[14]  C. DeWitt-Morette,et al.  Techniques and Applications of Path Integration , 1981 .

[15]  J. Adamowski,et al.  Strong-coupling limit of polaron energy, revisited , 1980 .

[16]  Chih-Yuan Lu,et al.  Generalized path-integral formalism of the polaron problem and its second-order semi-invariant correction to the ground-state energy , 1980 .

[17]  C. Kuper Polarons and Excitons , 1963 .

[18]  Boehm Quantum Mechanics , 1979, Introduction to the Standard Model and Beyond.

[19]  A. Huber Variational Principles in Quantum Statistical Mechanics , 1968 .

[20]  H. Haken Berechnung der Energie des Exzitonen-Grundzustandes im polaren Kristall nach einem neuen Variationsverfahren von Feynman. I , 1957 .

[21]  S. Varadhan,et al.  The polaron problem and large deviations , 1981 .

[22]  G. Mahan Many-particle physics , 1981 .

[23]  J. H. B. Kemperman,et al.  Review: Albert W. Marshall and Ingram Olkin, Inequalities: Theory of majorization and its applications, and Y. L. Tong, Probability inequalities in multivariate distributions , 1981 .

[24]  J. M. Luttinger Useful Bounds on Interesting Quantities by Path Integrals , 1978 .

[25]  J. Adamowski,et al.  Treatment of the exciton-phonon interaction via functional integration. I. Harmonic trial actions , 1981 .

[26]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[27]  J. Devreese,et al.  Path integrals and their applications in quantum, statistical, and solid state physics , 1978 .

[28]  J. Adamowski,et al.  Explicit evaluation of certain Gaussian functional integrals arising in problems of statistical physics , 1982 .

[29]  J. Devreese,et al.  On the Existence of a Phase Transition for the Frhlich Polaron , 1982 .

[30]  John D. Dollard,et al.  Product Integration with Application to Differential Equations , 1984 .

[31]  H. Büttner,et al.  EXCITONS IN POLAR SEMICONDUCTORS , 1983 .

[32]  E. Davies,et al.  One-parameter semigroups , 1980 .