Statistical Management and Modeling for Demand of Spare Parts

[1]  Brian G. Kingsman,et al.  Selecting the best periodic inventory control and demand forecasting methods for low demand items , 1997 .

[2]  Min-Chiang Wang,et al.  Estimating the lead-time demand distribution when the daily demand is non-normal and autocorrelated Hon-Shiang LAU , 1987 .

[3]  Carl R. Schultz Forecasting and Inventory Control for Sporadic Demand Under Periodic Review , 1987 .

[4]  T. Williams Stock Control with Sporadic and Slow-Moving Demand , 1984 .

[5]  Min-Chiang Wang,et al.  Estimating reorder points and other management science applications by bootstrap procedure , 1992 .

[6]  R. Brown Statistical forecasting for inventory control , 1960 .

[7]  G. S. Mudholkar,et al.  Exponentiated Weibull family for analyzing bathtub failure-rate data , 1993 .

[8]  Alessandro Persona,et al.  TPM: situation and procedure for a soft introduction in Italian factories , 2002 .

[9]  D. H. Middleton,et al.  Aircraft Maintenance Management Part 3 , 1993 .

[10]  李幼升,et al.  Ph , 1989 .

[11]  J. Boylan,et al.  Forecasting for Items with Intermittent Demand , 1996 .

[12]  R. Watson,et al.  The Effects of Demand-Forecast Fluctuations on Customer Service and Inventory Cost When Demand is Lumpy , 1987 .

[13]  T. Willemain,et al.  A new approach to forecasting intermittent demand for service parts inventories , 2004 .

[14]  Adel A. Ghobbar,et al.  Evaluation of forecasting methods for intermittent parts demand in the field of aviation: a predictive model , 2003, Comput. Oper. Res..

[15]  T. Willemain,et al.  The threshold bootstrap and threshold jackknife , 1999 .

[16]  Zhenmin Chen A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function , 2000 .

[17]  Thong Ngee Goh,et al.  A modified Weibull extension with bathtub-shaped failure rate function , 2002, Reliab. Eng. Syst. Saf..

[18]  James H. Bookbinder,et al.  Estimation of Inventory Re-Order Levels Using the Bootstrap Statistical Procedure , 1989 .

[19]  U. Hjorth A Reliability Distribution With Increasing, Decreasing, Constant and Bathtub-Shaped Failure Rates , 1980 .

[20]  Jie Mi Bathtub failure rate and upside-down bathtub mean residual life , 1995 .

[21]  Argyrios Syntetos,et al.  FORECASTING OF INTERMITTENT DEMAND , 2001 .

[22]  Anders Segerstedt,et al.  Inventory control with variation in lead times, especially when demand is intermittent , 1994 .

[23]  Roberto Verganti,et al.  A simulation framework for forecasting uncertain lumpy demand , 1999 .

[24]  Spyros Makridakis,et al.  Forecasting Methods for Management , 1989 .

[25]  Adel A. Ghobbar,et al.  Sources of intermittent demand for aircraft spare parts within airline operations , 2002 .

[26]  Jorge Haddock,et al.  The binary bootstrap: inference with autocorrelated binary data , 1993 .

[27]  F. R. Johnston,et al.  The Variance of Lead-Time Demand , 1986 .

[28]  John E. Tyworth,et al.  Robustness of the normal approximation of lead‐time demand in a distribution setting , 1997 .

[29]  C. R. Mitchell,et al.  An Analysis of Air Force EOQ Data with an Application to Reorder Point Calculation , 1983 .

[30]  J. B. Ward Determining Reorder Points When Demand is Lumpy , 1978 .

[31]  Radivoj Petrovic,et al.  SPARTA II: Further development in an expert system for advising on stocks of spare parts , 1992 .

[32]  William J. Stevenson,et al.  REORDER‐POINT MODELS WITH DISCRETE PROBABILITY DISTRIBUTIONS , 1983 .

[33]  Ralph D. Snyder,et al.  Control of inventories with intermittent demand , 1989 .

[34]  Michael D. D. Clarke Irregular airline operations: a review of the state-of-the-practice in airline operations control centers , 1998 .

[35]  J. D. Croston Forecasting and Stock Control for Intermittent Demands , 1972 .

[36]  Poul Alstrøm,et al.  Tracking signals in inventory control systems A simulation study , 1996 .

[37]  R. J. Coughlin Optimization of Spares in a Maintenance Scenario , 1984 .