An experimental analysis of self-adjusting computation
暂无分享,去创建一个
[1] Umut A. Acar,et al. CEAL: a C-based language for self-adjusting computation , 2009, PLDI '09.
[2] Mikkel Thorup,et al. Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 2001, JACM.
[3] Leonidas J. Guibas,et al. A package for exact kinetic data structures and sweepline algorithms , 2007, Comput. Geom..
[4] Jon Louis Bentley,et al. Decomposable Searching Problems I: Static-to-Dynamic Transformation , 1980, J. Algorithms.
[5] Jon Doyle. A truth maintenance system , 1981 .
[6] R. Hoover. Incremental graph evaluation (attribute grammar) , 1987 .
[7] Guy E. Blelloch,et al. An experimental analysis of self-adjusting computation , 2006, PLDI '06.
[8] Robert E. Tarjan,et al. Self-adjusting top trees , 2005, SODA '05.
[9] Larry Carter,et al. New classes and applications of hash functions , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).
[10] Leonidas J. Guibas,et al. Kinetic data structures in practice , 2007 .
[11] DONALD MICHIE,et al. “Memo” Functions and Machine Learning , 1968, Nature.
[12] David G. Kirkpatrick,et al. The Ultimate Planar Convex Hull Algorithm? , 1986, SIAM J. Comput..
[13] R. Bellman. Dynamic programming. , 1957, Science.
[14] J. Boissonnat,et al. Algorithmic Geometry: Frontmatter , 1998 .
[15] Paul F. Dietz,et al. Two algorithms for maintaining order in a list , 1987, STOC.
[16] John McCarthy,et al. A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 1) , 2018 .
[17] Analysis and caching of dependencies , 1996, ICFP '96.
[18] Umut A. Acar,et al. A cost semantics for self-adjusting computation , 2009, POPL '09.
[19] G.S. Brodal,et al. Dynamic planar convex hull , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..
[20] R. Tamassia,et al. Dynamic expression trees and their applications , 1991, SODA '91.
[21] Timothy M. Chan. Dynamic planar convex hull operations in near-logarithmic amortized time , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[22] Gerald J. Sussman,et al. Forward Reasoning and Dependency-Directed Backtracking in a System for Computer-Aided Circuit Analysis , 1976, Artif. Intell..
[23] John Henry Field. Incremental reduction in the lambda calculus and related reduction systems , 1991 .
[24] Monika Henzinger,et al. Maintaining Minimum Spanning Trees in Dynamic Graphs , 1997, ICALP.
[25] Guy E. Blelloch,et al. Adaptive functional programming , 2006 .
[26] Rafael Dueire Lins,et al. Garbage collection: algorithms for automatic dynamic memory management , 1996 .
[27] Thomas W. Reps,et al. A categorized bibliography on incremental computation , 1993, POPL '93.
[28] Raman Srinivas Sundaresh. Incremental computation via partial evaluation , 1992 .
[29] Umut A. Acar,et al. A Consistent Semantics of Self-adjusting Computation , 2007, ESOP.
[30] Robert E. Tarjan,et al. A data structure for dynamic trees , 1981, STOC '81.
[31] Roberto Tamassia,et al. Dynamic algorithms in computational geometry , 1992, Proc. IEEE.
[32] Greg N. Frederickson,et al. A data structure for dynamically maintaining rooted trees , 1997, SODA '93.
[33] Robert E. Tarjan,et al. Dynamic trees in practice , 2007, JEAL.
[34] Ronald L. Graham,et al. An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..
[35] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[36] Jon Louis Bentley,et al. Transforming static data structures to dynamic structures , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).
[37] Guy E. Blelloch,et al. Robust Kinetic Convex Hulls in 3D , 2008, ESA.
[38] Umut A. Acar,et al. Imperative self-adjusting computation , 2008, POPL '08.
[39] David Eppstein,et al. Sparsification—a technique for speeding up dynamic graph algorithms , 1997, JACM.
[40] Jan van Leeuwen,et al. Maintenance of Configurations in the Plane , 1981, J. Comput. Syst. Sci..
[41] Leonidas J. Guibas,et al. Kinetic data structures: a state of the art report , 1998 .
[42] Greg N. Frederickson,et al. Data Structures for On-Line Updating of Minimum Spanning Trees, with Applications , 1985, SIAM J. Comput..
[43] Umut A. Acar,et al. Adaptive Bayesian inference , 2007, NIPS 2007.
[44] David P. Dobkin,et al. The quickhull algorithm for convex hulls , 1996, TOMS.
[45] Donald E. Knuth,et al. The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .
[46] Roger Hoover. Incremental Graph Evaluation , 1987 .
[47] Haim Kaplan,et al. Kinetic and Dynamic Data Structures for Convex Hulls and Upper Envelopes , 2005, WADS.
[48] Leonidas J. Guibas,et al. An empirical comparison of techniques for updating Delaunay triangulations , 2004, SCG '04.
[49] Binay K. Bhattacharya,et al. On a Simple, Practical, Optimal, Output-Sensitive Randomized Planar Convex Hull Algorithm , 1997, J. Algorithms.
[50] William Pugh,et al. Incremental computation via function caching , 1989, POPL '89.
[51] Richard Cole,et al. Two Simplified Algorithms for Maintaining Order in a List , 2002, ESA.
[52] Mariette Yvinec,et al. Algorithmic geometry , 1998 .
[53] Guy E. Blelloch,et al. A Library for Self-Adjusting Computation , 2006, Electron. Notes Theor. Comput. Sci..
[54] David Eppstein,et al. Dynamic graph algorithms , 2010 .
[55] Umut A. Acar,et al. Memory management for self-adjusting computation , 2008, ISMM '08.
[56] Tim Teitelbaum,et al. Incremental reduction in the lambda calculus , 1990, LISP and Functional Programming.
[57] J. Saxe,et al. Transforming Static Data Structures to Dynamic Structures (Abridged Version) , 1979, FOCS 1979.
[58] Robert Harper. Self-adjusting computation , 2004, LICS 2004.
[59] Umut A. Acar,et al. Compiling self-adjusting programs with continuations , 2008, ICFP 2008.
[60] Tomasz Radzik. Implementation of dynamic trees with in-subtree operations , 1998, JEAL.
[61] Guy E. Blelloch,et al. Selective memoization , 2003, POPL '03.
[62] Ketan Mulmuley,et al. Computational geometry : an introduction through randomized algorithms , 1993 .
[63] Magnus Carlsson. Monads for incremental computing , 2002, ICFP '02.
[64] Umut A. Acar. Self-adjusting computation: (an overview) , 2009, PEPM '09.
[65] Robert E. Tarjan,et al. Dynamic trees as search trees via euler tours, applied to the network simplex algorithm , 1997, Math. Program..
[66] David A. McAllester. Truth Maintenance , 1990, AAAI.
[67] Leonidas J. Guibas,et al. Data Structures for Mobile Data , 1997, J. Algorithms.
[68] Mikkel Thorup,et al. Maintaining information in fully dynamic trees with top trees , 2003, TALG.
[69] Thomas W. Reps,et al. Incremental evaluation for attribute grammars with application to syntax-directed editors , 1981, POPL '81.
[70] Mikkel Thorup,et al. Minimizing Diameters of Dynamic Trees , 1997, ICALP.
[71] Guy E. Blelloch,et al. Dynamizing static algorithms, with applications to dynamic trees and history independence , 2004, SODA '04.
[72] Yanhong A. Liu,et al. Static caching for incremental computation , 1998, TOPL.
[73] Robert E. Tarjan,et al. Self-adjusting binary search trees , 1985, JACM.
[74] Leonidas J. Guibas,et al. Algorithmic issues in modeling motion , 2002, CSUR.
[75] Allan Heydon,et al. Caching function calls using precise dependencies , 2000, PLDI '00.
[76] Rastislav Bodík,et al. DITTO: automatic incrementalization of data structure invariant checks (in Java) , 2007, PLDI '07.
[77] Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions , 1996, Discret. Comput. Geom..
[78] Thomas W. Reps. Optimal-time incremental semantic analysis for syntax-directed editors , 1982, POPL '82.