Nanoelectronics meets biology: from new nanoscale devices for live-cell recording to 3D innervated tissues.

High spatiotemporal resolution interfaces between electrical sensors and biological systems, from single live cells to tissues, is crucial for many areas, including fundamental biophysical studies as well as medical monitoring and intervention. Herein, we summarize recent progress in the development and application of novel nanoscale devices for intracellular electrical recording of action potentials and the effort of merging electronic and biological systems seamlessly in three dimensions by using macroporous nanoelectronic scaffolds. The uniqueness of these nanoscale devices for minimally invasive, large-scale, high spatial resolution, and three-dimensional neural activity mapping are highlighted.

[1]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[2]  Charles M Lieber,et al.  Flexible electrical recording from cells using nanowire transistor arrays , 2009, Proceedings of the National Academy of Sciences.

[3]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[4]  T. Boland,et al.  Electrophysiological characterization of embryonic hippocampal neurons cultured in a 3D collagen hydrogel. , 2009, Biomaterials.

[5]  Tal Dvir,et al.  Nanowired three dimensional cardiac patches , 2011, Nature nanotechnology.

[6]  R. Wightman Probing Cellular Chemistry in Biological Systems with Microelectrodes , 2006, Science.

[7]  Charles M Lieber,et al.  Graphene and nanowire transistors for cellular interfaces and electrical recording. , 2010, Nano letters.

[8]  Bozhi Tian,et al.  Outside looking in: nanotube transistor intracellular sensors. , 2012, Nano letters.

[9]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2008, Nature.

[10]  Massoud Motamedi,et al.  Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons. , 2007, Nano letters.

[11]  Wei Zhou,et al.  Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials , 2013, Proceedings of the National Academy of Sciences.

[12]  D. Ingber,et al.  Reconstituting Organ-Level Lung Functions on a Chip , 2010, Science.

[13]  Charles M. Lieber,et al.  Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. , 2012, Nature materials.

[14]  Xiaolin Zheng,et al.  Fabricating nanowire devices on diverse substrates by simple transfer-printing methods , 2010, Proceedings of the National Academy of Sciences.

[15]  M. Kozlov,et al.  Mechanics of membrane fusion , 2008, Nature Structural &Molecular Biology.

[16]  L. Weber,et al.  Transport properties of silicon , 1991 .

[17]  Tal Dvir,et al.  Nanotechnological strategies for engineering complex tissues. , 2020, Nature nanotechnology.

[18]  Charles M. Lieber,et al.  Electrical recording from hearts with flexible nanowire device arrays. , 2009, Nano letters.

[19]  Johannes J. Letzkus,et al.  Dendritic patch-clamp recording , 2006, Nature Protocols.

[20]  F. Guilak,et al.  Control of stem cell fate by physical interactions with the extracellular matrix. , 2009, Cell stem cell.

[21]  D. Bers Cardiac excitation–contraction coupling , 2002, Nature.

[22]  N. Madias,et al.  Metabolic acidosis: pathophysiology, diagnosis and management , 2010, Nature Reviews Nephrology.

[23]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[24]  Lisa E. Freed,et al.  Accordion-Like Honeycombs for Tissue Engineering of Cardiac Anisotropy , 2008, Nature materials.

[25]  R. Peri,et al.  High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology , 2008, Nature Reviews Drug Discovery.

[26]  Karl-Heinz Boven,et al.  Micro-Electrode Arrays in Cardiac Safety Pharmacology , 2004, Drug safety.

[27]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[28]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[29]  N. Melosh,et al.  Fusion of biomimetic stealth probes into lipid bilayer cores , 2010, Proceedings of the National Academy of Sciences.

[30]  Smadar Cohen,et al.  Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. , 2011, Biomaterials.

[31]  Simon F. Giszter,et al.  Spinal cord injury: Present and future therapeutic devices and prostheses , 2011, Neurotherapeutics.

[32]  J. Shappir,et al.  In-cell recordings by extracellular microelectrodes , 2010, Nature Methods.

[33]  David C. Martin,et al.  Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays , 2005, Experimental Neurology.

[34]  D. Szarowski,et al.  Brain responses to micro-machined silicon devices , 2003, Brain Research.

[35]  Zhong Lin Wang,et al.  Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. , 2004, Nano letters.

[36]  Brian Litt,et al.  Flexible, Foldable, Actively Multiplexed, High-Density Electrode Array for Mapping Brain Activity in vivo , 2011, Nature Neuroscience.

[37]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[38]  T. Bryllert,et al.  Vertical high-mobility wrap-gated InAs nanowire transistor , 2006, IEEE Electron Device Letters.

[39]  Matthias P. Lutolf,et al.  Designing materials to direct stem-cell fate , 2009, Nature.

[40]  Charles M. Lieber,et al.  Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. , 2013, Nano letters.

[41]  Claudiu T. Supuran,et al.  Interfering with pH regulation in tumours as a therapeutic strategy , 2011, Nature Reviews Drug Discovery.

[42]  Charles M Lieber,et al.  Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection. , 2012, Nano letters.

[43]  Jacob T. Robinson,et al.  Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. , 2012, Nature nanotechnology.

[44]  Bozhi Tian,et al.  Nanowire transistor arrays for mapping neural circuits in acute brain slices , 2010, Proceedings of the National Academy of Sciences.

[45]  V. Zhdanov,et al.  Formation of supported membranes from vesicles. , 2000, Physical review letters.

[46]  Charles M. Lieber,et al.  Design and Implementation of Functional Nanoelectronic Interfaces With Biomolecules, Cells, and Tissue Using Nanowire Device Arrays , 2010, IEEE Transactions on Nanotechnology.

[47]  Hao Yan,et al.  Programmable nanowire circuits for nanoprocessors , 2011, Nature.

[48]  Christof Koch,et al.  Neuroscience: Observatories of the mind , 2012, Nature.

[49]  Bozhi Tian,et al.  Rational growth of branched nanowire heterostructures with synthetically encoded properties and function , 2011, Proceedings of the National Academy of Sciences.

[50]  I. LeGrice,et al.  3‐Dimensional configuration of perimysial collagen fibres in rat cardiac muscle at resting and extended sarcomere lengths , 1999, The Journal of physiology.

[51]  Areles Molleman,et al.  Patch Clamping: An Introductory Guide To Patch Clamp Electrophysiology , 2002 .

[52]  Charles M. Lieber,et al.  Three-Dimensional, Flexible Nanoscale Field-Effect Transistors as Localized Bioprobes , 2010, Science.

[53]  Monya Baker,et al.  Tissue models: A living system on a chip , 2011, Nature.

[54]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[55]  Avi Caspi,et al.  Feasibility study of a retinal prosthesis: spatial vision with a 16-electrode implant. , 2009, Archives of ophthalmology.

[56]  P. Yang,et al.  Giant piezoresistance effect in silicon nanowires , 2006, Nature nanotechnology.

[57]  M. Häusser,et al.  Electrophysiology in the age of light , 2009, Nature.

[58]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[59]  Charles M Lieber,et al.  Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording. , 2012, Nano letters.

[60]  Angela Tooker,et al.  Caged neuron MEA: A system for long-term investigation of cultured neural network connectivity , 2008, Journal of Neuroscience Methods.

[61]  Bozhi Tian,et al.  Single crystalline kinked semiconductor nanowire superstructures , 2009, Nature nanotechnology.

[62]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[63]  W. Rutten Selective electrical interfaces with the nervous system. , 2002, Annual review of biomedical engineering.

[64]  Sigurd Wagner,et al.  Monitoring hippocampus electrical activity in vitro on an elastically deformable microelectrode array. , 2009, Journal of neurotrauma.

[65]  D. Prince,et al.  Intradendritic recordings from hippocampal neurons. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Peidong Yang,et al.  Silicon Vertically Integrated Nanowire Field Effect Transistors , 2006 .

[67]  O. Prohaska,et al.  Thin-Film Multiple Electrode Probes: Possibilities and Limitations , 1986, IEEE Transactions on Biomedical Engineering.

[68]  Gengfeng Zheng,et al.  Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays , 2006, Science.

[69]  Andrew G. Gillies,et al.  Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. , 2010, Nature materials.

[70]  Bozhi Tian,et al.  Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor , 2011, Nature nanotechnology.

[71]  B. Cui,et al.  Intracellular Recording of Action Potentials by Nanopillar Electroporation , 2012, Nature nanotechnology.

[72]  Mario Delmar,et al.  Practical methods in cardiovascular research , 2005 .

[73]  Charles M. Lieber,et al.  Encoding Electronic Properties by Synthesis of Axial Modulation-Doped Silicon Nanowires , 2005, Science.

[74]  Charles M. Lieber,et al.  Nanowire-based biosensors. , 2006, Analytical chemistry.

[75]  Molly M Stevens,et al.  Synthetic polymer scaffolds for tissue engineering. , 2009, Chemical Society reviews.