Xanthine Oxidase Induces Foam Cell Formation through LOX-1 and NLRP3 Activation

[1]  M. Esteve,et al.  Decreased OxLDL uptake and cholesterol efflux in THP1 cells elicited by cortisol and by cortisone through 11β-hydroxysteroid dehydrogenase type 1. , 2016, Atherosclerosis.

[2]  G. Getz,et al.  Enzymatically Modified Low-Density Lipoprotein Promotes Foam Cell Formation in Smooth Muscle Cells via Macropinocytosis and Enhances Receptor-Mediated Uptake of Oxidized Low-Density Lipoprotein , 2016, Arteriosclerosis, thrombosis, and vascular biology.

[3]  S. Grinstein,et al.  Chemokine Signaling Enhances CD36 Responsiveness toward Oxidized Low-Density Lipoproteins and Accelerates Foam Cell Formation. , 2016, Cell reports.

[4]  C. Juan,et al.  VISFATIN PROMOTES FOAM CELL FORMATION BY DYSREGULATING CD36, SRA, ABCA1, AND ABCG1 EXPRESSION IN RAW264.7 MACROPHAGES , 2015, Shock.

[5]  G. Rao,et al.  Reactive Oxygen Species (ROS) Mediate p300-dependent STAT1 Protein Interaction with Peroxisome Proliferator-activated Receptor (PPAR)-γ in CD36 Protein Expression and Foam Cell Formation* , 2015, The Journal of Biological Chemistry.

[6]  Zijian Xie,et al.  Oxidized LDL–bound CD36 recruits an Na+/K+-ATPase–Lyn complex in macrophages that promotes atherosclerosis , 2015, Science Signaling.

[7]  W. Pan,et al.  Effect of Urate-lowering Therapy on the Risk of Cardiovascular Disease and All-cause Mortality in Patients with Gout: A Case-matched Cohort Study , 2015, The Journal of Rheumatology.

[8]  Jihong Han,et al.  Inhibition of Glutathione Production Induces Macrophage CD36 Expression and Enhances Cellular-oxidized Low Density Lipoprotein (oxLDL) Uptake* , 2015, The Journal of Biological Chemistry.

[9]  M. Febbraio,et al.  CD36/SR-B2-TLR2 Dependent Pathways Enhance Porphyromonas gingivalis Mediated Atherosclerosis in the Ldlr KO Mouse Model , 2015, PloS one.

[10]  Se-Yun Kim,et al.  Hyperuricemia-induced NLRP3 activation of macrophages contributes to the progression of diabetic nephropathy. , 2015, American journal of physiology. Renal physiology.

[11]  F. Martinon,et al.  Xanthine oxidoreductase regulates macrophage IL1β secretion upon NLRP3 inflammasome activation , 2015, Nature Communications.

[12]  L. Polito,et al.  Xanthine oxidoreductase in atherosclerosis pathogenesis: not only oxidative stress. , 2014, Atherosclerosis.

[13]  Yubo Fan,et al.  LOX-1, mtDNA damage, and NLRP3 inflammasome activation in macrophages: implications in atherogenesis. , 2014, Cardiovascular research.

[14]  A. So,et al.  Xanthine Oxidase Inhibition by Febuxostat Attenuates Experimental Atherosclerosis in Mice , 2014, Scientific Reports.

[15]  Zihui Zhou,et al.  OxLDL-induced IL-1beta secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation , 2013, Inflammation Research.

[16]  T. Eleftheriadis,et al.  Uric acid induces caspase-1 activation, IL-1β secretion and P2X7 receptor dependent proliferation in primary human lymphocytes. , 2013, Hippokratia.

[17]  J. Mehta,et al.  Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis , 2013, Scientific Reports.

[18]  J. Mehta,et al.  DPP-4 inhibitors repress foam cell formation by inhibiting scavenger receptors through protein kinase C pathway , 2013, Acta Diabetologica.

[19]  J. Mehta,et al.  Lectin-like Oxidized Low-density Lipoprotein Receptor-1 (LOX-1) and Cardiac Fibroblast Growth , 2012, Hypertension.

[20]  T. Asano,et al.  Xanthine Oxidoreductase Is Involved in Macrophage Foam Cell Formation and Atherosclerosis Development , 2012, Arteriosclerosis, thrombosis, and vascular biology.

[21]  J. Mehta,et al.  Current Concepts of the Role of Oxidized LDL Receptors in Atherosclerosis , 2012, Current Atherosclerosis Reports.

[22]  Egil Lien,et al.  NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals , 2010, Nature.

[23]  N. Tuteja,et al.  Oxidative stress and ischemic myocardial syndromes. , 2009, Medical science monitor : international medical journal of experimental and clinical research.

[24]  J. Mehta,et al.  Deletion of LOX-1 Reduces Atherogenesis in LDLR Knockout Mice Fed High Cholesterol Diet , 2007, Circulation research.

[25]  M. Walters,et al.  Uric acid and xanthine oxidase: future therapeutic targets in the prevention of cardiovascular disease? , 2006, British journal of clinical pharmacology.

[26]  R. Busse,et al.  Xanthine oxidase inhibitor tungsten prevents the development of atherosclerosis in ApoE knockout mice fed a Western-type diet. , 2006, Free radical biology & medicine.

[27]  Corinne E Griguer,et al.  Xanthine oxidase-dependent regulation of hypoxia-inducible factor in cancer cells. , 2006, Cancer research.

[28]  J. Mehta,et al.  Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders. , 2006, Cardiovascular research.

[29]  O. E. Hansen Hyperuricemia, gout, and atherosclerosis. , 1966, American heart journal.