Sinh-arcsinh distributions
暂无分享,去创建一个
[1] H. Gebelein. Das statistische Problem der Korrelation als Variations‐ und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung , 1941 .
[2] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[3] N. L. Johnson,et al. Systems of frequency curves generated by methods of translation. , 1949, Biometrika.
[4] T. W. Anderson,et al. Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .
[5] V. Zwet. Convex transformations of random variables , 1965 .
[6] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[7] S. Shapiro,et al. An Analysis of Variance Test for Normality (Complete Samples) , 1965 .
[8] F. Downton,et al. Linear estimates with polynomial coefficients. , 1966, Biometrika.
[9] R. D'Agostino. An omnibus test of normality for moderate and large size samples , 1971 .
[10] Ralph B. D'agostesto. Small sample probability points for the D test of normality , 1972 .
[11] R. D'Agostino. Small Sample Probability Points for the D Test of Normality , 1972 .
[12] G. C. Tiao,et al. Bayesian inference in statistical analysis , 1973 .
[13] L. Shenton,et al. Omnibus test contours for departures from normality based on √b1 and b2 , 1975 .
[14] Pandu R. Tadikamalla,et al. Random Sampling from the Exponential Power Distribution , 1980 .
[15] Anil K. Bera,et al. Efficient tests for normality, homoscedasticity and serial independence of regression residuals , 1980 .
[16] Dennis D. Boos,et al. A Test for Asymmetry Associated with the Hodges-Lehmann Estimator , 1982 .
[17] A. Azzalini. A class of distributions which includes the normal ones , 1985 .
[18] Richard L. Smith,et al. A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution , 1987 .
[19] P. Holland,et al. Dependence function for continuous bivariate densities , 1987 .
[20] Robert A. Koyak,et al. On Measuring Internal Dependence in a Set of Random Variables , 1987 .
[21] Detection of symmetry or lack of 11 and applications , 1988 .
[22] James R. Rieck,et al. A log-linear model for the Birnbaum-Saunders distribution , 1991 .
[23] P. Royston. A Remark on Algorithm as 181: The W‐Test for Normality , 1995 .
[24] M. Taqqu,et al. Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .
[25] P. Cabilio,et al. A simple test of symmetry about an unknown median , 1996 .
[26] M. C. Jones. The local dependence function , 1996 .
[27] M. Steel,et al. On Bayesian Modelling of Fat Tails and Skewness , 1998 .
[28] H. Joe. Multivariate models and dependence concepts , 1998 .
[29] G. S. Mudholkar,et al. The epsilon-skew-normal distribution for analyzing near-normal data , 2000 .
[30] D. Dey,et al. A General Class of Multivariate Skew-Elliptical Distributions , 2001 .
[31] M. Tiku,et al. NONNORMAL REGRESSION. II. SYMMETRIC DISTRIBUTIONS , 2001 .
[32] A. Azzalini,et al. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.
[33] M. C. Jones,et al. A skew extension of the t‐distribution, with applications , 2003 .
[34] M. C. Jones. Families of distributions arising from distributions of order statistics , 2004 .
[35] Marc G. Genton,et al. Skew-elliptical distributions and their applications : a journey beyond normality , 2004 .
[36] M. Genton,et al. Flexible Class of Skew‐Symmetric Distributions , 2004 .
[37] Anna Clara Monti,et al. Inferential Aspects of the Skew Exponential Power Distribution , 2004 .
[38] Jin Zhang,et al. Likelihood-ratio tests for normality , 2005, Comput. Stat. Data Anal..
[39] H. Büning,et al. Jarque–Bera Test and its Competitors for Testing Normality – A Power Comparison , 2007 .
[40] R. Rigby,et al. Generalized Additive Models for Location Scale and Shape (GAMLSS) in R , 2007 .
[41] Optimal detection of Fechner-asymmetry , 2008 .
[42] M. Genton,et al. Robust Likelihood Methods Based on the Skew‐t and Related Distributions , 2008 .