Sinh-arcsinh distributions

We introduce the sinh-arcsinh transformation and hence, by applying it to a generating distribution with no parameters other than location and scale, usually the normal, a new family of sinh-arcsinh distributions. This four-parameter family has symmetric and skewed members and allows for tailweights that are both heavier and lighter than those of the generating distribution. The central place of the normal distribution in this family affords likelihood ratio tests of normality that are superior to the state-of-the-art in normality testing because of the range of alternatives against which they are very powerful. Likelihood ratio tests of symmetry are also available and are very successful. Three-parameter symmetric and asymmetric subfamilies of the full family are also of interest. Heavy-tailed symmetric sinh-arcsinh distributions behave like Johnson S U distributions, while their light-tailed counterparts behave like sinh-normal distributions, the sinh-arcsinh family allowing a seamless transition between the two, via the normal, controlled by a single parameter. The sinh-arcsinh family is very tractable and many properties are explored. Likelihood inference is pursued, including an attractive reparameterization. Illustrative examples are given. A multivariate version is considered. Options and extensions are discussed. Copyright 2009, Oxford University Press.

[1]  H. Gebelein Das statistische Problem der Korrelation als Variations‐ und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung , 1941 .

[2]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[3]  N. L. Johnson,et al.  Systems of frequency curves generated by methods of translation. , 1949, Biometrika.

[4]  T. W. Anderson,et al.  Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .

[5]  V. Zwet Convex transformations of random variables , 1965 .

[6]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[7]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[8]  F. Downton,et al.  Linear estimates with polynomial coefficients. , 1966, Biometrika.

[9]  R. D'Agostino An omnibus test of normality for moderate and large size samples , 1971 .

[10]  Ralph B. D'agostesto Small sample probability points for the D test of normality , 1972 .

[11]  R. D'Agostino Small Sample Probability Points for the D Test of Normality , 1972 .

[12]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[13]  L. Shenton,et al.  Omnibus test contours for departures from normality based on √b1 and b2 , 1975 .

[14]  Pandu R. Tadikamalla,et al.  Random Sampling from the Exponential Power Distribution , 1980 .

[15]  Anil K. Bera,et al.  Efficient tests for normality, homoscedasticity and serial independence of regression residuals , 1980 .

[16]  Dennis D. Boos,et al.  A Test for Asymmetry Associated with the Hodges-Lehmann Estimator , 1982 .

[17]  A. Azzalini A class of distributions which includes the normal ones , 1985 .

[18]  Richard L. Smith,et al.  A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution , 1987 .

[19]  P. Holland,et al.  Dependence function for continuous bivariate densities , 1987 .

[20]  Robert A. Koyak,et al.  On Measuring Internal Dependence in a Set of Random Variables , 1987 .

[21]  Detection of symmetry or lack of 11 and applications , 1988 .

[22]  James R. Rieck,et al.  A log-linear model for the Birnbaum-Saunders distribution , 1991 .

[23]  P. Royston A Remark on Algorithm as 181: The W‐Test for Normality , 1995 .

[24]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[25]  P. Cabilio,et al.  A simple test of symmetry about an unknown median , 1996 .

[26]  M. C. Jones The local dependence function , 1996 .

[27]  M. Steel,et al.  On Bayesian Modelling of Fat Tails and Skewness , 1998 .

[28]  H. Joe Multivariate models and dependence concepts , 1998 .

[29]  G. S. Mudholkar,et al.  The epsilon-skew-normal distribution for analyzing near-normal data , 2000 .

[30]  D. Dey,et al.  A General Class of Multivariate Skew-Elliptical Distributions , 2001 .

[31]  M. Tiku,et al.  NONNORMAL REGRESSION. II. SYMMETRIC DISTRIBUTIONS , 2001 .

[32]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.

[33]  M. C. Jones,et al.  A skew extension of the t‐distribution, with applications , 2003 .

[34]  M. C. Jones Families of distributions arising from distributions of order statistics , 2004 .

[35]  Marc G. Genton,et al.  Skew-elliptical distributions and their applications : a journey beyond normality , 2004 .

[36]  M. Genton,et al.  Flexible Class of Skew‐Symmetric Distributions , 2004 .

[37]  Anna Clara Monti,et al.  Inferential Aspects of the Skew Exponential Power Distribution , 2004 .

[38]  Jin Zhang,et al.  Likelihood-ratio tests for normality , 2005, Comput. Stat. Data Anal..

[39]  H. Büning,et al.  Jarque–Bera Test and its Competitors for Testing Normality – A Power Comparison , 2007 .

[40]  R. Rigby,et al.  Generalized Additive Models for Location Scale and Shape (GAMLSS) in R , 2007 .

[41]  Optimal detection of Fechner-asymmetry , 2008 .

[42]  M. Genton,et al.  Robust Likelihood Methods Based on the Skew‐t and Related Distributions , 2008 .