On homoclinic and heteroclinic orbits of Chen's System
暂无分享,去创建一个
[1] Lu Jun. Chen's Chaotic Attractor and Its Characteristic Quantity , 2002 .
[2] Guanrong Chen,et al. On a Generalized Lorenz Canonical Form of Chaotic Systems , 2002, Int. J. Bifurc. Chaos.
[3] Guanrong Chen,et al. On the generalized Lorenz canonical form , 2005 .
[4] M. T. Yassen,et al. Chaos control of Chen chaotic dynamical system , 2003 .
[5] Guanrong Chen,et al. On stability and bifurcation of Chen’s system , 2004 .
[6] Guanrong Chen,et al. Chen's Attractor Exists , 2004, Int. J. Bifurc. Chaos.
[7] J. Cowan. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields : John Guckenheimer and Philip Holmes Springer-Verlag, New York, 1983, 453 pp., $32.00 , 1986 .
[8] Guanrong Chen,et al. Bifurcation Analysis of Chen's equation , 2000, Int. J. Bifurc. Chaos.
[9] Guanrong Chen,et al. YET ANOTHER CHAOTIC ATTRACTOR , 1999 .
[10] Guanrong Chen,et al. Local bifurcations of the Chen System , 2002, Int. J. Bifurc. Chaos.
[11] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[12] H. Agiza,et al. Synchronization of Rossler and Chen chaotic dynamical systems using active control , 2001, Physics Letters A.
[13] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[14] Daizhan Cheng,et al. Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.
[15] Xinghuo Yu,et al. Detecting unstable periodic orbits in Chen's Chaotic Attractor , 2000, Int. J. Bifurc. Chaos.