Resolution is Cut-Free

In this article, we show that the extension of the resolution proof system to deduction modulo is equivalent to the cut-free fragment of the sequent calculus modulo. The result is obtained through a syntactic translation, without using any cut-elimination procedure. Additionally, we show Skolem theorem and inversion/focusing results. Thanks to the expressiveness of deduction modulo, all these results also apply to the cases of higher-order resolution, Peano’s arithmetic and Gentzen’s LK.

[1]  Tanel Tammet,et al.  Resolution, Inverse Method and the Sequent Calculus , 1997, Kurt Gödel Colloquium.

[2]  Christoph Weidenbach,et al.  Computing Small Clause Normal Forms , 2001, Handbook of Automated Reasoning.

[3]  Jürgen Stuber A Model-Based Completeness Proof of Extended Narrowing and Resolution , 2001, IJCAR.

[4]  J. D. Johnson,et al.  5. Migration—The Inverse Method , 1982 .

[5]  Jacob M. Howe,et al.  Proof search issues in some non-classical logics , 1998 .

[6]  J. A. Robinson,et al.  Handbook of Automated Reasoning (in 2 volumes) , 2001 .

[7]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[8]  Maribel Fernández,et al.  Curry-Style Types for Nominal Terms , 2006, TYPES.

[9]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[10]  Damien Doligez,et al.  Zenon : An Extensible Automated Theorem Prover Producing Checkable Proofs , 2007, LPAR.

[11]  Delia Kesner,et al.  Theory and applications of explicit substitutions: Introduction , 2001, Mathematical Structures in Computer Science.

[12]  J.M.G.G. de Nivelle Ordering Refinements of Resolution , 1995 .

[13]  Olivier Hermant,et al.  Semantic Cut Elimination in the Intuitionistic Sequent Calculus , 2005, TLCA.

[14]  Olivier Hermant Méthodes sémantiques en déduction modulo , 2005 .

[15]  Dale Miller,et al.  Focusing and Polarization in Intuitionistic Logic , 2007, CSL.

[16]  Gilles Dowek,et al.  Proof normalization modulo , 1998, Journal of Symbolic Logic.

[17]  JEAN-MARC ANDREOLI,et al.  Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..

[18]  Anil Nerode,et al.  Logic for Applications , 1997, Graduate Texts in Computer Science.

[19]  Grigori Mints,et al.  Gentzen-type systems and resolution rules. Part I. Propositional logic , 1990, Conference on Computer Logic.

[20]  Claude Kirchner,et al.  HOL-λσ: an intentional first-order expression of higher-order logic , 2001, Mathematical Structures in Computer Science.

[21]  Alan Robinson,et al.  Handbook of automated reasoning , 2001 .

[22]  Shôji Maehara The predicate calculus with ε-symbol , 1955 .

[23]  L. Ebner,et al.  Skolem's Method of Elimination of Positive Quantifiers in Sequential Calculi , 1971 .

[24]  Richard Bonichon,et al.  On Constructive Cut Admissibility in Deduction Modulo , 2006, TYPES.

[25]  Richard Bonichon,et al.  TaMeD: A Tableau Method for Deduction Modulo , 2004, IJCAR.

[26]  M. E. Szabo,et al.  The collected papers of Gerhard Gentzen , 1969 .

[27]  Claude Kirchner,et al.  Cut Elimination in Deduction Modulo by Abstract Completion , 2007, LFCS.

[28]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[29]  M. Fitting First-order logic and automated theorem proving (2nd ed.) , 1996 .

[30]  Stephen Cole Kleene,et al.  Two papers on the predicate calculus , 1952 .

[31]  Grigori Mints,et al.  Gentzen-type systems and resolution rule. II. Predicate logic , 1993 .

[32]  Gilles Dowek,et al.  Cut elimination for Zermelo set theory , 2023, ArXiv.

[33]  Richard Bonichon,et al.  A Semantic Completeness Proof for TaMeD , 2006, LPAR.

[34]  Gilles Dowek,et al.  Arithmetic as a Theory Modulo , 2005, RTA.

[35]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[36]  G. Takeuti Proof Theory , 1975 .

[37]  Guillaume Burel,et al.  A First-Order Representation of Pure Type Systems Using Superdeduction , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.

[38]  Sam Lindley,et al.  Extensional Rewriting with Sums , 2007, TLCA.

[39]  Andrei Voronkov,et al.  The Inverse Method , 2001, Handbook of Automated Reasoning.

[40]  B. Konev,et al.  Implementing the clausal normal form transformation with proof generation , 2003 .

[41]  A. Troelstra,et al.  Constructivism in Mathematics: An Introduction , 1988 .

[42]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[43]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[44]  Frank Pfenning,et al.  Automated Theorem Proving , 2004 .

[45]  Andrei Voronkov,et al.  The design and implementation of VAMPIRE , 2002, AI Commun..

[46]  Claude Kirchner,et al.  Theorem Proving Modulo , 2003, Journal of Automated Reasoning.

[47]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[48]  Peter B. Andrews Resolution in type theory , 1971, Journal of Symbolic Logic.