暂无分享,去创建一个
Mariia Dobko | Ostap Viniavskyi | Danylo-Ivan Kolinko | Yurii Yelisieiev | Mariia Dobko | Ostap Viniavskyi | Yurii Yelisieiev | Danylo-Ivan Kolinko
[1] Yan Wang,et al. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation , 2021, ArXiv.
[2] Enhua Wu,et al. Squeeze-and-Excitation Networks , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[3] Jens Petersen,et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation , 2020, Nature Methods.
[4] Zhiqiang He,et al. Modality-Pairing Learning for Brain Tumor Segmentation , 2020, ArXiv.
[5] Wenxuan Wang,et al. TransBTS: Multimodal Brain Tumor Segmentation Using Transformer , 2021, MICCAI.
[6] Klaus H. Maier-Hein,et al. nnU-Net for Brain Tumor Segmentation , 2020, BrainLes@MICCAI.
[7] Christos Davatzikos,et al. The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification , 2021, ArXiv.
[8] Christos Davatzikos,et al. Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features , 2017, Scientific Data.
[9] Natalia Gimelshein,et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.
[10] Septimiu E. Salcudean,et al. Reducing the Hausdorff Distance in Medical Image Segmentation With Convolutional Neural Networks , 2019, IEEE Transactions on Medical Imaging.
[11] Brian B. Avants,et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) , 2015, IEEE Transactions on Medical Imaging.
[12] Klaus H. Maier-Hein,et al. Abstract: nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation , 2019, Bildverarbeitung für die Medizin.