Total Weight Choosability of Cone Graphs

A total weighting of a graph G is a mapping $$\varphi $$φ that assigns a weight to each vertex and each edge of G. The vertex-sum of $$v \in V(G)$$v∈V(G) with respect to $$\varphi $$φ is $$S_{\varphi }(v)=\sum _{e\in E(v)}\varphi (e)+\varphi (v)$$Sφ(v)=∑e∈E(v)φ(e)+φ(v). A total weighting is proper if adjacent vertices have distinct vertex-sums. A graph $$G=(V,E)$$G=(V,E) is called $$(k,k{^{\prime }})$$(k,k′)-choosable if the following is true: For any total list assignment L which assigns to each vertex v a set L(v) of k real numbers, and assigns to each edge e a set L(e) of $$k{^{\prime }}$$k′ real numbers, there is a proper total weighting $$\varphi $$φ with $$\varphi (y)\in L(y)$$φ(y)∈L(y) for any $$y \in V \cup E$$y∈V∪E. In this paper, we prove that for any graph $$G\ne K_1$$G≠K1, for any positive integer m, the m-cone graph of G is (1, 4)-choosable. Moreover, we give some sufficient conditions for the m-cone graph of G to be (1, 3)-choosable. In particular, if G is a tree, a complete bipartite graph or a generalized $$\theta $$θ-graph, then the m-cone graph of G is (1, 3)-choosable.

[1]  Xuding Zhu,et al.  List Total Weighting of Graphs , 2010 .

[2]  Jan Mycielski Sur le coloriage des graphs , 1955 .

[3]  Qinglin Yu,et al.  On vertex-coloring 13-edge-weighting , 2008 .

[4]  Noga Alon,et al.  A nowhere-zero point in linear mappings , 1989, Comb..

[5]  Bruce A. Reed,et al.  Degree constrained subgraphs , 2005, Electron. Notes Discret. Math..

[6]  Xia Zhang,et al.  Equitable edge‐colorings of simple graphs , 2011, J. Graph Theory.

[7]  Tomasz Bartnicki,et al.  The n-ordered graphs: A new graph class , 2009 .

[8]  Florian Pfender,et al.  Vertex-coloring edge-weightings: Towards the 1-2-3-conjecture , 2010, J. Comb. Theory B.

[9]  T. Wong,et al.  Total weight choosability of d-degenerate graphs , 2015, 1510.00809.

[10]  Xuding Zhu,et al.  Permanent Index of Matrices Associated with Graphs , 2017, Electron. J. Comb..

[11]  Xuding Zhu,et al.  Total weight choosability of Cartesian product of graphs , 2012, Eur. J. Comb..

[12]  Shanzhen Lu,et al.  Marcinkiewicz integral with rough kernels , 2008 .

[13]  Xuding Zhu,et al.  Total weight choosability of graphs , 2011, J. Graph Theory.

[14]  Daqing Yang,et al.  On total weight choosability of graphs , 2013, J. Comb. Optim..

[15]  Jakub Przybylo,et al.  Total Weight Choosability of Graphs , 2011, Electron. J. Comb..

[16]  A. Thomason,et al.  Edge weights and vertex colours , 2004 .

[17]  Bruce A. Reed,et al.  Vertex-Colouring Edge-Weightings , 2007, Comb..

[18]  Xuding Zhu,et al.  Total weight choosability of Mycielski graphs , 2017, J. Comb. Optim..

[19]  Zhongqi Yang,et al.  Ecological mechanisms and prospects for utilization of toxins from parasitic hymenopterans , 2008 .

[20]  Xuding Zhu,et al.  Every graph is (2,3)-choosable , 2016, Comb..