Moving finite element simulations for reaction-diffusion systems

This work is concerned with the numerical simulations for two reaction-diffusion systems, i.e., the Brusselator model and the Gray-Scott model. The numerical algorithm is based upon a moving finite element method which helps to resolve large solution gradients. High quality meshes are obtained for both the spot replication and the moving wave along boundaries by using proper monitor functions. Unlike [33], this work finds out the importance of the boundary grid redistribution which is particularly important for a class of problems for the Brusselator model. Several ways for verifying the quality of the numerical solutions are also proposed, which may be of important use for comparisons.

[1]  A. Hunding,et al.  Morphogen prepatterns during mitosis and cytokinesis in flattened cells: three dimensional Turing structures of reaction-diffusion systems in cylindrical coordinates. , 1985, Journal of theoretical biology.

[2]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[3]  Arjen Doelman,et al.  Pattern formation in the one-dimensional Gray - Scott model , 1997 .

[4]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[5]  Tao Tang,et al.  An Adaptive Time-Stepping Strategy for the Molecular Beam Epitaxy Models , 2011, SIAM J. Sci. Comput..

[6]  M. Granero,et al.  A bifurcation analysis of pattern formation in a diffusion governed morphogenetic field , 1977, Journal of mathematical biology.

[7]  Andrew J. Wathen,et al.  A moving grid finite element method applied to a model biological pattern generator , 2003 .

[8]  Paul Andries Zegeling,et al.  Balanced monitoring of flow phenomena in moving mesh methods , 2009 .

[9]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[10]  Peter K. Jimack,et al.  Velocity-Based Moving Mesh Methods for Nonlinear Partial Differential Equations , 2011 .

[11]  H. Meinhardt Models of biological pattern formation , 1982 .

[12]  Michael J. Ward,et al.  Numerical Challenges for Resolving Spike Dynamics for Two One‐Dimensional Reaction‐Diffusion Systems , 2003 .

[13]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[14]  Philip K. Maini,et al.  Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains , 2007, J. Comput. Phys..

[15]  David Gavaghan,et al.  The Dynamics and Pinning of a Spike for a Reaction-Diffusion System , 2002, SIAM J. Appl. Math..

[16]  Heyu Wang,et al.  Simulating Two-phase Viscoelastic Flows Using Moving Finite Element Methods , 2009 .

[17]  Zhonghua Qiao Numerical Investigations of the Dynamical Behaviors and Instabilities for the Gierer-Meinhardt System , 2007 .

[18]  J. Schnakenberg,et al.  Simple chemical reaction systems with limit cycle behaviour. , 1979, Journal of theoretical biology.

[19]  M. Ward,et al.  Asymptotic Methods for Reaction-Diffusion Systems: Past and Present , 2006, Bulletin of mathematical biology.

[20]  Pingwen Zhang,et al.  A Moving Mesh Finite Element Algorithm for Singular Problems in Two and Three Space Dimensions , 2002 .

[21]  L. G. Harrison,et al.  Order and localization in reaction-diffusion pattern , 1995 .

[22]  Michael J. Ward,et al.  The Dynamics of Multispike Solutions to the One-Dimensional Gierer--Meinhardt Model , 2002, SIAM J. Appl. Math..

[23]  D. Holloway Reaction-diffusion theory of localized structures with application to vertebrate organogenesis , 1995 .

[24]  Michael J. Ward,et al.  The stability of spike solutions to the one-dimensional Gierer—Meinhardt model , 2001 .

[25]  Zhonghua Qiao,et al.  An Adaptive Time-Stepping Strategy for the Cahn-Hilliard Equation , 2012 .

[26]  Matthias Winter,et al.  On the two-dimensional Gierer-Meinhardt system with strong coupling , 1999 .

[27]  P. Gray,et al.  Sustained oscillations and other exotic patterns of behavior in isothermal reactions , 1985 .

[28]  Pingwen Zhang,et al.  Moving mesh methods in multiple dimensions based on harmonic maps , 2001 .

[29]  Juncheng Wei,et al.  Spikes for the Two-Dimensional Gierer-Meinhardt System: The Weak Coupling Case , 2001, J. Nonlinear Sci..

[30]  Hans Meinhardt,et al.  The Algorithmic Beauty of Sea Shells , 1998, The Virtual Laboratory.

[31]  Andrew J. Wathen,et al.  A Moving Grid Finite Element Method for the Simulation of Pattern Generation by Turing Models on Growing Domains , 2005, J. Sci. Comput..

[32]  H. Meinhardt,et al.  A theory of biological pattern formation , 1972, Kybernetik.

[33]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[34]  P. Zegeling,et al.  Adaptive moving mesh computations for reaction--diffusion systems , 2004 .

[35]  Wentao Sun,et al.  The Slow Dynamics of Two-Spike Solutions for the Gray-Scott and Gierer-Meinhardt Systems: Competition and Oscillatory Instabilities , 2005, SIAM J. Appl. Dyn. Syst..

[36]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[37]  Anotida Madzvamuse,et al.  Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains , 2006, J. Comput. Phys..