Embedding dualities for set partitions and for relational structures

We show that for a set F of forbidden set partitions and an integer k there is a finite collection D of partitions of ordinals, such that any finite partition with at most k blocks avoids all the elements of F if and only if it is contained in at least one element of D. Using this result, we reprove rationality of the generating function enumerating a hereditary class of set partitions with a bounded number of blocks. We show that this result does not extend to partitions with an unbounded number of blocks. We also consider hereditary classes of relational structures. We give a characterization of those classes that can be expressed as classes of finite substructures of a finite collection of (possibly infinite) relational structures.

[1]  Nikola Ruskuc,et al.  Pattern classes of permutations via bijections between linearly ordered sets , 2008, Eur. J. Comb..

[2]  Roland Fraïssé Theory of relations , 1986 .

[3]  Joseph B. Kruskal,et al.  The Theory of Well-Quasi-Ordering: A Frequently Discovered Concept , 1972, J. Comb. Theory A.

[4]  Béla Bollobás,et al.  Hereditary properties of partitions, ordered graphs and ordered hypergraphs , 2006, Eur. J. Comb..

[5]  Bruce E. Sagan,et al.  Pattern Avoidance in Set Partitions , 2006, Ars Comb..

[6]  R. Fraïssé Sur l'extension aux relations de quelques propriétés des ordres , 1954 .

[7]  Vincent Vatter PERMUTATION CLASSES OF EVERY GROWTH RATE ABOVE 2.48188 , 2010 .

[8]  Béla Bollobás,et al.  The Penultimate Rate of Growth for Graph Properties , 2001, Eur. J. Comb..

[9]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[10]  Maurice Pouzet The Profile of relations , 2007 .

[11]  Daniel A. Spielman,et al.  An Infinite Antichain of Permutations , 2000, Electron. J. Comb..

[12]  Nikola Ruskuc,et al.  Partially Well-Ordered Closed Sets of Permutations , 2002, Order.

[13]  Nikola Ruskuc,et al.  Pattern Avoidance Classes and Subpermutations , 2005, Electron. J. Comb..

[14]  Anna de Mier On the Symmetry of the Distribution of k-Crossings and k-Nestings in Graphs , 2006, Electron. J. Comb..

[15]  Martin Klazar,et al.  Counting Pattern-free Set Partitions I: A Generalization of Stirling Numbers of the Second Kind , 2000, Eur. J. Comb..

[16]  Martin Klazar,et al.  On Growth Rates of Closed Permutation Classes , 2003, Electron. J. Comb..

[17]  Maximilian M. Murphy,et al.  Restricted permutations, antichains, atomic classes and stack sorting , 2003 .

[18]  Adam M. Goyt Avoidance of partitions of a three-element set , 2008, Adv. Appl. Math..

[19]  M. H. ALBERT,et al.  Growing at a Perfect Speed , 2009, Comb. Probab. Comput..

[20]  Béla Bollobás,et al.  The Speed of Hereditary Properties of Graphs , 2000, J. Comb. Theory B.

[21]  Maurice Pouzet,et al.  Representation of ideals of relational structures , 2009, Discret. Math..

[22]  Vincent Vatter Small permutation classes , 2007, 0712.4006.

[23]  Toufik Mansour,et al.  On Pattern-Avoiding Partitions , 2008, Electron. J. Comb..

[24]  Béla Bollobás Surveys in Combinatorics 2007: Hereditary and monotone properties of combinatorial structures , 2007 .